【題目】如圖,一次函數(shù)y=kx+1(k≠0)與反比例函數(shù)(m≠0)的圖象有公共點(diǎn)A(1,2).直線lx軸于點(diǎn)N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點(diǎn)B,C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求ABC的面積?

【答案】解:(1)將A(1,2)代入一次函數(shù)解析式得:k+1=2,即k=1,一次函數(shù)解析式為y=x+1。

將A(1,2)代入反比例解析式得:m=2,

反比例解析式為。

(2)設(shè)一次函數(shù)與x軸交于D點(diǎn),過(guò)點(diǎn)A作AE垂直于x軸于點(diǎn)E,

在y=x+1中,令y=0,求出x=﹣1,即OD=1。

A(1,2)。AE=2,OE=1。

N(3,0),到B橫坐標(biāo)為3。

將x=3代入一次函數(shù)得:y=4,

將x=3代入反比例解析式得:,

B(3,4),即ON=3,BN=4,C(3,),即CN=

。

解析(1)將A坐標(biāo)代入一次函數(shù)解析式中求出k的值,確定出一次函數(shù)解析式,將A坐標(biāo)代入反比例函數(shù)解析式中求出m的值,即可確定出反比例解析式;

(2)設(shè)一次函數(shù)與x軸交點(diǎn)為D點(diǎn),過(guò)A作AE垂直于x軸,由ABC面積=BDN面積-ADE面積-梯形AECN面積,求出即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以墻(長(zhǎng)度不限)為一邊,再用長(zhǎng)為13m的鐵絲為另外三邊,圍成面積為20的長(zhǎng)方形.已知長(zhǎng)大于寬,則長(zhǎng)方形的長(zhǎng)、寬分別是( )

A. 5m,4m或9m,2 m B. 9m,2m C. 10m,1.5m D. 8m,2.5m或5m,4m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AB⊙O的直徑,點(diǎn)CD⊙O上,且BC=6cm,AC=8cm∠ABD=45°

1)求BD的長(zhǎng);

2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,.

(1)如圖1,點(diǎn)在邊上,,求的面積.

(2)如圖2,點(diǎn)在邊上,過(guò)點(diǎn),,連結(jié)于點(diǎn),過(guò)點(diǎn),垂足為,連結(jié).求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中有兩點(diǎn)A(0,1),B(﹣1,0),動(dòng)點(diǎn)P在反比例函數(shù)y=的圖象上運(yùn)動(dòng),當(dāng)線段PA與線段PB之差的絕對(duì)值最大時(shí),點(diǎn)P的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一天,小明和爸爸去登山,已知山腳到山頂?shù)穆烦虨?/span>300米,小明先走了一段路程,爸爸才開始出發(fā),圖中兩條線段分別表示小明和爸爸離開山腳的路程(米)與登山所用時(shí)間(分)的關(guān)系(從爸爸開始登山時(shí)計(jì)時(shí)),根據(jù)圖象,下列說(shuō)法錯(cuò)誤的是(

A.爸爸登山時(shí),小明已經(jīng)走了50

B.爸爸走了5分鐘,小明仍在爸爸的前面

C.小明比爸爸晚到5分鐘

D.爸爸前10分鐘登山的速度比小明慢,10分鐘之后登山的速度比小明快

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線Myax2+bx+ca≠0)經(jīng)過(guò)A(﹣1,0),且頂點(diǎn)坐標(biāo)為B(0,1).

(1)求拋物線M的函數(shù)表達(dá)式;

(2)設(shè)Ft,0)為x軸正半軸上一點(diǎn),將拋物線M繞點(diǎn)F旋轉(zhuǎn)180°得到拋物線M1

拋物線M1的頂點(diǎn)B1的坐標(biāo)為   ;

當(dāng)拋物線M1與線段AB有公共點(diǎn)時(shí),結(jié)合函數(shù)的圖象,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一條單車道的拋物線形隧道如圖所示.隧道中公路的寬度AB=8m,隧道的最高點(diǎn)C到公路的距離為6m.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線的表達(dá)式;

(2)現(xiàn)有一輛貨車的高度是4.4m,貨車的寬度是2m,為了保證安全,車頂距離隧道頂部至少0.5m,通過(guò)計(jì)算說(shuō)明這輛貨車能否安全通過(guò)這條隧道.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個(gè)實(shí)數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( 。

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

同步練習(xí)冊(cè)答案