【題目】如圖,三角板ABC的兩直角邊AC,BC的長分別是40cm和30cm,點G在斜邊AB上,且BG=30cm,將這個三角板以G為中心按逆時針旋轉(zhuǎn)90°,至△A′B′C′的位置,那么旋轉(zhuǎn)后兩個三角板重疊部分(四邊形EFGD)的面積為cm2 .
【答案】144
【解析】解:由勾股定理得AB= = =50, 又∵BG=30,
∴AG=AB﹣BG=20,
由△ADG∽△ABC得, = = ,即 = = ,
解得DG=15,AD=25,
A′D=A′G﹣DG=AG﹣GD=20﹣15=5,
由△A′DE∽△A′B′C′,可知 = = ,
由△A′GF∽△A′C′B′,可知
根據(jù)相似三角形面積比等于相似比的平方,可知
S四邊形EFGD=S△A′FG﹣S△A′DE= S△A′B′C′﹣ S△A′B′C′= × ×40×30=144cm2 .
把所求重疊部分面積看作△A′FG與△A′DE的面積差,并且這兩個三角形都與△ABC相似,根據(jù)勾股定理求對應邊的長,根據(jù)相似三角形的面積比等于相似比的平方求面積即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,正方形ABCD的對角線AC,BD相交于點O,E是AC上一點,連接EB,過點A作AM⊥BE,垂足為M,AM與BD相交于F.
(1)直接寫出線段OE與OF的數(shù)量關(guān)系;
(2)如圖2,若點E在AC的延長線上,過點A作AM⊥BE ,AM交DB的延長線于點F,其他條件不變.問(1)中的結(jié)論還成立嗎?如果成立,請給出證明;如果不成立,說明理由;
(3)如圖3,當BC=CE時,求∠EAF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,∠ABC,∠BCD的平分線分別交AD于點E,F,BE,CF相交于點G.
(1)求證:BE⊥CF;
(2)若AB=a,CF=b,寫出求BE的長的思路.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,∠ABC,∠BCD的平分線分別交AD于點E,F,BE,CF相交于點G.
(1)求證:BE⊥CF;
(2)若AB=a,CF=b,寫出求BE的長的思路.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于與坐標軸不平行的直線l和點P,給出如下定義:過點P作x軸,y軸的垂線,分別交直線l于點M,N,若PM+PN≤4,則稱P為直線l的近距點,特別地,直線上l所有的點都是直線l的近距點.已知點A(-,0),B(0,2),C(-2,2).
(1)當直線l的表達式為y=x時,
①在點A,B,C中,直線l的近距點是 ;
②若以OA為邊的矩形OAEF上所有的點都是直線l的近距點,求點E的縱坐標n的取值范圍;
(2)當直線l的表達式為y=kx時,若點C是直線l的近距點,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,平面直角坐標系中,A(0,4),B(0,2),點C是x軸上一點,點D為OC的中點.
(1)求證:BD∥AC;
(2)若點C在x軸正半軸上,且BD與AC的距離等于1,求點C的坐標;
(3)如果OE⊥AC于點E,當四邊形ABDE為平行四邊形時,求直線AC的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的頂點為(1,0),且經(jīng)過點(0,1).
(1)求該拋物線對應的函數(shù)的解析式;
(2)將該拋物線向下平移m(m>0)個單位,設(shè)得到的拋物線的頂點為A,與x軸的兩個交點為B、C,若△ABC為等邊三角形.
①求m的值;
②設(shè)點A關(guān)于x軸的對稱點為點D,在拋物線上是否存在點P,使四邊形CBDP為菱形?若存在,寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖的數(shù)陣是由77個偶數(shù)排成:
(1)如圖中任意作一個平行四邊形框,設(shè)左上角的數(shù)為x,那么其他3個數(shù)從小到大可分別表示為 .
(2)小紅說這4個數(shù)的和是292,能求出這4個數(shù)嗎?若存在,請求出這4個數(shù).不存在說明理由.
(3)小明說4個數(shù)的和是420,存在這樣的數(shù)嗎?若存在,請求出這4個數(shù),不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小玲和小明值日打掃教室衛(wèi)生,小玲單獨打掃雪20min完成,小明單獨打掃雪16min完成.因小明要將數(shù)學作業(yè)本交到老師辦公室推遲一會兒,故先由小玲單獨打掃4min,余下的再由兩人一起完成,則兩人一起打掃完教師衛(wèi)生需要多長時間?設(shè)兩人一起打掃完教室衛(wèi)生需要x min,則根據(jù)題意可列方程( 。
A. (x+4)+x=1 B. x+(x+4)=1
C. (x﹣4)+x=1 D. x+(x﹣4)=1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com