【題目】在如圖所示的平面直角坐標系中表示下面各點:
A(0,3);B(1,-3);C(3,-5);D(-3,-5);E(3,5);F(5,7);G(5,0)
(1)A點到原點O的距離是 。
(2)將點C向軸的負方向平移6個單位,它與點 重合。
(3)連接CE,則直線CE與軸是什么關(guān)系?
(4)點F分別到、軸的距離是多少?
科目:初中數(shù)學 來源: 題型:
【題目】某出租車以汽車站為出發(fā)點,在東西方向的城市道路上進行營運,若規(guī)定向東為正,向西為負,行車依先后順序記錄如下(單位:千米):
+4,-5,+9,-3,+6,-3,-8,-4,+7,-6.
(1)計算說明出租車將最后一名乘客送到目的地,此時離汽車站多遠?在汽車站什么方向?
(2)若該出租車每千米收費標準為3元,求出租車的營業(yè)額是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】市政府要求武漢輕軌二七路段工程12個月完工,F(xiàn)由甲、乙兩工程隊參與施工,已知甲隊單獨完成需要16個月,每月需費用600萬元;乙隊單獨完成需要24個月,每月需費用400萬元。由于前期工程路面較寬,可由甲、乙兩隊共同施工。隨著工程的進行,路面變窄,兩隊再同時施工,對交通影響較大,為了減小對解放大道的交通秩序的影響,后期只能由一個工程隊施工.工程總指揮部結(jié)合實際情況現(xiàn)擬定兩套工程方案:
①先由甲、乙兩個工程隊合做m個月后,再由甲隊單獨施工,保證恰好按時完成.
②先由甲、乙兩個工程隊合做n個月后,再由乙隊單獨施工,也保證恰好按時完成.
⑴求兩套方案中m和n的值;
⑵通過計算,并結(jié)合施工費用及施工對交通的影響,你認為該工程總指揮部應該選擇哪種方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在等腰梯形ABCD中,AD//BC,∠BDC=∠BCD,點E是線段BD上一點,且BE=AD.
(1)證明:△ADB≌△EBC;
(2)直接寫出圖中所有的等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校計劃組織全校1441名師生到相關(guān)部門規(guī)劃的林區(qū)植樹,經(jīng)過研究,決定租用當?shù)刈廛嚬疽还?/span>62輛兩種型號客車作為交通工具.
下表是租車公司提供給學校有關(guān)兩種型號客車的載客量和租金信息:
型號 | 載客量 | 租金單價 |
30人/輛 | 380元/輛 | |
20人/輛 | 280元/輛 |
注:載客量指的是每輛客車最多可載該校師生的人數(shù).設(shè)學校租用型號客車輛,租車總費用為元.
(1)求與的函數(shù)解析式,請直接寫出的取值范圍;
(2)若要使租車總費用不超過21940元,一共有幾種租車方案?哪種租車方案總費用最省?最省的總費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“十一”長假期間,小張和小李決定騎自行車外出旅游,兩人相約一早從各自家中出發(fā),已知兩家相距10千米,小張出發(fā)必過小李家.
(1)若兩人同時出發(fā),小張車速為20千米,小李車速為15千米,經(jīng)過多少小時能相遇?
(2)若小李的車速為10千米,小張?zhí)崆?/span>20分鐘出發(fā),兩人商定小李出發(fā)后半小時二人相遇,則小張的車速應為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角梯形ABCD中,AB//DC,∠DAB=90°,AD=2DC=4,AB=6.動點M以每秒1個單位長的速度,從點A沿線段AB向點B運動;同時點P以相同的速度,從點C沿折線C﹣D﹣A向點A運動.當點M到達點B時,兩點同時停止運動.過點M作直線l//AD,與線段CD的交點為E,與折線A﹣C﹣B的交點為Q.點M運動的時間為t(秒).
(1)當t=0.5時,求線段QM的長;
(2)當0<t<2時,如果以C、P、Q為頂點的三角形為直角三角形,求t的值;
(3)當t>2時,連接PQ交線段AC于點R.請?zhí)骄? 是否為定值,若是,試求這個定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)?/span>△ACD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.
中線AD的取值范圍是 ;
(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com