【題目】如圖,直線BD∥EF,AE與BD交于點C,若∠ABC=30°,∠BAC=75°,則∠CEF的大小為( )
A.60°
B.75°
C.90°
D.105°
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標中,菱形OABC的面積為12,點B在y軸上,點C在反比例函數(shù)y= 的圖象上,則k的值為( )
A.3
B.﹣3
C.6
D.﹣6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,BC=2,∠BAC=30°,斜邊AB的兩個端點分別在相互垂直的射線OM、ON上滑動,下列結論:
①若C、O兩點關于AB對稱,則OA=2 ;
②C、O兩點距離的最大值為4;
③若AB平分CO,則AB⊥CO;
④斜邊AB的中點D運動路徑的長為 ;
其中正確的是(把你認為正確結論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:AB是⊙O的弦,點C是 的中點,連接OB、OC,OC交AB于點D.
(1)如圖1,求證:AD=BD;
(2)如圖2,過點B作⊙O的切線交OC的延長線于點M,點P是 上一點,連接AP、BP,求證:∠APB﹣∠OMB=90°;
(3)如圖3,在(2)的條件下,連接DP、MP,延長MP交⊙O于點Q,若MQ=6DP,sin∠ABO= ,求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點P,直線BF與AD的延長線交于點F,且∠AFB=∠ABC.
(1)求證:直線BF是⊙O的切線.
(2)若CD=2 ,OP=1,求線段BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某生物科技發(fā)展公司投資2000萬元,研制出一種綠色保健食品.已知該產(chǎn)品的成本為40元/件,試銷時,售價不低于成本價,又不高于180元/件.經(jīng)市場調查知,年銷售量y(萬件)與銷售單價x(元/件)的關系滿足下表所示的規(guī)律.
銷售單價x(元/件) | … | 60 | 65 | 70 | 80 | 85 | … |
年銷售量y(萬件) | … | 140 | 135 | 130 | 120 | 115 | … |
(1)y與x之間的函數(shù)關系式及自變量x的取值范圍。
(2)經(jīng)測算:年銷售量不低于90萬件時,每件產(chǎn)品成本降低2元,設銷售該產(chǎn)品年獲利潤為W(萬元)(W=年銷售額﹣成本﹣投資),求出年銷售量低于90萬件和不低于90萬件時,W與x之間的函數(shù)關系式;
(3)在(2)的條件下,當銷售單位定為多少時,公司銷售這種產(chǎn)品年獲利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】道外區(qū)勞技學校為了調整重點學科建設和師資配備,對學校開設的四個傳統(tǒng)重點學科開展學生較喜愛的學科調查問卷活動(每名學生必選且只選一項).如圖是在某中學調查的數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計圖,解答下列問題:
(1)求參與本次調查的共有多少名學生?并補全條形統(tǒng)計圖.
(2)在扇形統(tǒng)計圖中,求喜愛“葫蘆烙畫”所對應的扇形的圓心角的度數(shù)?
(3)若道外區(qū)大約有12000名中學生,估計喜歡“陶藝”的共有多少名學生?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次數(shù)學活動課上小芳,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當長為半徑畫弧,分別交AC,AB于點M,N,再分別以點M,N為圓心,大于 MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=8,AB=30,請你幫助她算一下△ABD的面積是( )
A.150
B.130
C.240
D.120
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3800米,從飛機上觀測山頂目標C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標C的俯角是50°,求這座山的高度CD.
(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com