【題目】(1)計算:﹣12+(π3.14)0()2+;

(2)先化簡,再求值:[(2x+y)(2xy)+(x+y)22(2x2xy)]÷(x),其中x、y滿足+(y+4)2=0

【答案】(1)3;(2)2x8y,22

【解析】

(1)根據(jù)零指數(shù)冪、負整數(shù)指數(shù)冪可以解答本題;

(2)根據(jù)平方差公式、完全平方公式和多項式除以單項式可以化簡題目中的式子,再根據(jù)+(y+4)2=0,可以得到x、y的值,然后將xy代入化簡后的式子即可解答本題.

解:(1)12+(π3.14)0( )2+

=1+19+6

=3;

(2)[(2x+y)(2xy)+(x+y)22(2x2xy)]÷(x)

=(4x2y2+x2+2xy+y24x2+2xy)×( )

=(x2+4xy)×()

=2x8y,

+(y+4)2=0,

x5=0y+4=0,

解得,x=5,y=4

∴當x=5,y=4時,原式=2×58×(4)=10+32=22

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,長方形紙片ABCD的長AD9cm,寬AB3cm,將其折疊,使點D與點B重合.

求:(1)折疊后DE的長;(2)以折痕EF為邊的正方形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了開展陽光體育運動,計劃購買籃球、足球共60個,已知每個籃球的價格為70元,每個足球的價格為80.

1)若購買這兩類球的總金額為4600元,求籃球、足球各買了多少個?

2)若購買籃球的總金額不超過購買足球的總金額,求最多可購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在ABCD中,BF平分∠ABCAD于點F,AEBF于點O,交BC于點E,連接EF

1)求證:四邊形ABEF是菱形:

2)若菱形ABEF的周長為16,∠BEF120°,求AE的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為籌備迎新生晚會,同學們設計了一個圓筒形燈罩,底色漆成白色,然后纏繞紅色油紙.如圖,已知圓筒高108cm,其圓筒底面周長為36cm,如果在表面纏繞油紙4圈,應裁剪油紙的最短為_____cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖.已知某開發(fā)區(qū)有一塊四邊形空地ABCD,現(xiàn)計劃在該空地上種植草皮,經測量∠ADC=90°,AD=6mCD=8m,BC=AB=13m,若每平方米草皮需200元,則在該空地上種植草皮共需多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題提出

(1)如圖①,在正方形ABCD中,對角線AC=8,則正方形ABCD的面積為   ;

問題探究

(2)如圖②,在四邊形ABCD中,AD=AB,∠DAB=DCB=90°,∠ADC+ABC=180°,若四邊形ABCD的面積為8,求對角線AC的長;

問題解決

(3)如圖③,四邊形ABCD是張叔叔要準備開發(fā)的菜地示意圖,其中邊ADAB是準備用磚來砌的磚墻,且滿足AD=AB,∠DAB=90°,邊DCCB是準備用現(xiàn)有的長度分別為3米和7米的竹籬笆來圍成的籬笆墻,即DC=3米,CB=7米.按照這樣的想法,張叔叔圍成的菜園里對角線AC的長是否存在最大值呢?若存在,求出這個最大值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),E是直線AB、CD內部一點,AB∥CD,連接EA、ED.

(1)探究:

①若∠A=30°,∠D=40°,則∠AED等于多少度?

②若∠A=20°,∠D=60°,則∠AED等于多少度?

③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關系,并證明你的結論.

(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點E,與邊CD交于點F,①②③④分別是被射線FE隔開的四個區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個區(qū)域上點,猜想:∠PEB、∠PFC、∠EPF之間的關系.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在兩面墻之間有一個底端在A點的梯子,當它靠在一側的墻上時,梯子的頂端在B點,當它靠在另一側的墻上時,梯子的頂端在D點,已知∠BAC60°,點B到地面的垂直距離BC5米,DE6米.

1)求梯子的長度;

2)求兩面墻之間的距離CE

查看答案和解析>>

同步練習冊答案