【題目】已知A、B兩點(diǎn)的坐標(biāo)分別為 (0,3),(2,0),以線段AB為直角邊,在第一象限內(nèi)作等腰直角三角形ABC,使∠BAC=90°,如果在第二象限內(nèi)有一點(diǎn)P(a,),且△ABP和△ABC的面積相等,則a=_____.
【答案】-.
【解析】
先根據(jù)AB兩點(diǎn)的坐標(biāo)求出OA、OB的值,再由勾股定理求出AB的長(zhǎng)度,根據(jù)三角形的面積公式即可得出△ABC的面積;連接OP,過(guò)點(diǎn)P作PE⊥x軸,由△ABP的面積與△ABC的面積相等,可知S△ABP=S△POA+S△AOB﹣S△BOP=,故可得出a的值.
∵A、B兩點(diǎn)的坐標(biāo)分別為 (0,3),(2,0),
∴OA=3,OB=2,
∴,
∵△ABC是等腰直角三角形,∠BAC=90°,
∴,
作PE⊥x軸于E,連接OP,
此時(shí)BE=2﹣a,
∵△ABP的面積與△ABC的面積相等,
∴,
,
解得a=﹣.
故答案為﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O.
(1)畫出△AOB平移后的三角形,其平移后的方向?yàn)樯渚AD的方向,平移的距離為AD的長(zhǎng).
(2)觀察平移后的圖形,除了矩形ABCD外,還有一種特殊的平行四邊形?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC各頂點(diǎn)的坐標(biāo)分別為A(2,2),B(4,1),C(4,4).(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是 1個(gè)單位長(zhǎng)度).
(1)畫出將△ABC繞點(diǎn)O 順時(shí)針旋轉(zhuǎn)90度得到的△A1B1C1;
(2)寫出A1、B1、C1的坐標(biāo);
(3)求出線段AC在旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積(結(jié)果保留).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線AE:與拋物線相交于另一點(diǎn)E,點(diǎn)D為拋物線的頂點(diǎn).
(1)求直線BC的解析式及點(diǎn)E的坐標(biāo);
(2)如圖2,直線AE上方的拋物線上有一點(diǎn)P,過(guò)點(diǎn)P作PF⊥BC于點(diǎn)F,過(guò)點(diǎn)P作平行于軸的直線交直線BC于點(diǎn)G,當(dāng)△PFG周長(zhǎng)最大時(shí),在軸上找一點(diǎn)M,在AE上找一點(diǎn)N,使得值最小,請(qǐng)求出此時(shí)N點(diǎn)的坐標(biāo)及的最小值;
(3)在第(2)問(wèn)的條件下,點(diǎn)R為拋物線對(duì)稱軸上的一點(diǎn),在平面直角坐標(biāo)系中是否存在點(diǎn)S,使以點(diǎn)N,E,R,S為頂點(diǎn)的四邊形為矩形,若存在,請(qǐng)直接寫出點(diǎn)S的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)為A(0,3)、B(3,4)、C(2,2),(正方形網(wǎng)格中,每個(gè)小正方形邊長(zhǎng)為1個(gè)單位長(zhǎng)度)
(1)畫出△ABC向下平移4個(gè)單位得到的△A1B1C1;
(2)以B為位似中心,在網(wǎng)格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比2:1,直接寫出C2點(diǎn)坐標(biāo)是 ;
(3)△A2BC2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與坐標(biāo)軸分別交于點(diǎn)A、B,與直線交于點(diǎn)C.在線段OA上,動(dòng)點(diǎn)Q以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向點(diǎn)A做勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)O做勻速運(yùn)動(dòng),當(dāng)點(diǎn)P、Q其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).分別過(guò)點(diǎn)P、Q作x軸的垂線,交直線AB、OC于點(diǎn)E、F,連接EF.若運(yùn)動(dòng)時(shí)間為t秒,在運(yùn)動(dòng)過(guò)程中四邊形PEFQ總為矩形(點(diǎn)P、Q重合除外)。
(1)求點(diǎn)P運(yùn)動(dòng)的速度是多少?
(2)當(dāng)t為多少秒時(shí),矩形PEFQ為正方形?
(3)當(dāng)t為多少秒時(shí),矩形PEFQ的面積S最大?并求出最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,矩形DEFG的頂點(diǎn)G、F分別在AC、BC上,DE在AB上.
(1)求證:△ADG∽△FEB;
(2)若AG=5,AD=4,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)P,點(diǎn)P在第一象限.PA⊥x軸于點(diǎn)A,PB⊥y軸于點(diǎn)B.一次函數(shù)的圖象分別交軸、軸于點(diǎn)C、D,且S△PBD=4, .
(1)求點(diǎn)D的坐標(biāo);
(2)求一次函數(shù)與反比例函數(shù)的解析式;
(3)根據(jù)圖象寫出當(dāng)時(shí),一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c(b,c均為常數(shù))的圖象經(jīng)過(guò)兩點(diǎn)A(2,0),B(0,﹣6).
(1)求這個(gè)二次函數(shù)的解析式;
(2)若點(diǎn)C(m,0)(m>2)在這個(gè)二次函數(shù)的圖象上,連接AB,BC,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com