【題目】已知:△ABC在坐標平面內,三個頂點的坐標為A(0,3)、B(3,4)、C(2,2),(正方形網格中,每個小正方形邊長為1個單位長度)

(1)畫出△ABC向下平移4個單位得到的△A1B1C1;

(2)以B為位似中心,在網格中畫出△A2BC2,使△A2BC2與△ABC位似,且位似比2:1,直接寫出C2點坐標是   ;

(3)△A2BC2的面積是   平方單位.

【答案】(1)答案見解析 (2)答案見解析 (3)10

【解析】

(1)利用平移的性質得出對應點坐標進而求出即可;

(2)利用位似圖形的性質得出對應點位置進而得出答案;

(3)利用△A2BC2的形狀求出其面積即可.

解:(1)如圖所示:△A1B1C1,即為所求;

(2)如圖所示:△A2BC2即為所求,C2點坐標為(1,0);

(3)△A2BC2的面積位為:×(22=10平方單位.

故答案為:10.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于⊙O,點I是△ABC的內心,∠AIC=124°,點EAD的延長線上,則∠CDE的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,陽光通過窗口照到教室內,豎直窗框在地面上留下2.1 m長的影子如圖所示,已知窗框的影子DE的點E到窗下墻腳的距離CE=3.9 m,窗口底邊離地面的距離BC=1.2 m,試求窗口的高度(即AB的值).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文具商店對文具進行組合銷售,甲種組合:2支紅色圓珠筆,4支黑色圓珠筆;乙種組合:3支紅色圓珠筆,8支黑色圓珠筆,1個筆記本;丙種組合:2支紅色圓珠筆,6支黑色圓珠筆,1個筆記本.已知紅色圓珠筆每支2元,黑色圓珠筆每支1.5元,筆記本每個10元.某個周末銷售這三種組合文具共485元,其中紅色圓珠筆的銷售額為116元,則筆記本的銷售額為________元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC于點F,連接DF,分析下列五個結論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF,其中正確的結論有________個。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A、B兩點的坐標分別為 0,3),(2,0),以線段AB為直角邊,在第一象限內作等腰直角三角形ABC,使∠BAC90°,如果在第二象限內有一點Pa,),且△ABP和△ABC的面積相等,則a_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,且經過弦CD的中點H,已知sinCDB=,BD=5,則AH的長為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果點P(2x+6,x-4)在平面直角坐標系的第四象限內,那么x的取值范圍在數(shù)軸上可表示為

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是邊長為3的等邊三角形,將△ABC沿直線BC向右平移,使點B與點C重合,得到△ECD,連接BE,交ACF

1)猜想ACBE的位置關系,并證明你的結論;

2)求線段BE的長.

查看答案和解析>>

同步練習冊答案