【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長(zhǎng)線于點(diǎn)E.
(1)求∠CBE的度數(shù);
(2)過點(diǎn)D作DF∥BE,交AC的延長(zhǎng)線于點(diǎn)F,求∠F的度數(shù).
【答案】(1) 65°;(2) 25°.
【解析】
(1)先根據(jù)直角三角形兩銳角互余求出∠ABC=90°﹣∠A=50°,由鄰補(bǔ)角定義得出∠CBD=130°.再根據(jù)角平分線定義即可求出∠CBE=∠CBD=65°;
(2)先根據(jù)三角形外角的性質(zhì)得出∠CEB=90°﹣65°=25°,再根據(jù)平行線的性質(zhì)即可求出∠F=∠CEB=25°.
(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,
∴∠ABC=90°﹣∠A=50°,
∴∠CBD=130°.
∵BE是∠CBD的平分線,
∴∠CBE=∠CBD=65°;
(2)∵∠ACB=90°,∠CBE=65°,
∴∠CEB=90°﹣65°=25°.
∵DF∥BE,
∴∠F=∠CEB=25°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)若x,y都是實(shí)數(shù),且,求5x+13y+6的立方根;
(2)已知△ABC的三邊長(zhǎng)分別為a,b,c,且滿足,求c的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸的單位長(zhǎng)度為1.
(1)如果點(diǎn)B,D表示的數(shù)互為相反數(shù),那么圖中點(diǎn)A、點(diǎn)D表示的數(shù)分別是 、 ;
(2)當(dāng)點(diǎn)B為原點(diǎn)時(shí),在數(shù)軸上是否存在點(diǎn)M,使得點(diǎn)M到點(diǎn)A的距離是點(diǎn)M到點(diǎn)D的距離的2倍,若存在,請(qǐng)求出此時(shí)點(diǎn)M所表示的數(shù);若不存在,說明理由;
(3) 在(2)的條件下,點(diǎn)A、點(diǎn)C分別以2個(gè)單位長(zhǎng)度/秒和0.5個(gè)單位長(zhǎng)度同時(shí)向右運(yùn)動(dòng),同時(shí)點(diǎn)P從原點(diǎn)出發(fā)以3個(gè)單位長(zhǎng)度/秒的速度向左運(yùn)動(dòng),當(dāng)點(diǎn)A與點(diǎn)C之間的距離為3個(gè)單位長(zhǎng)度時(shí),求點(diǎn)P所對(duì)應(yīng)的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,我們把對(duì)角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請(qǐng)說明理由.
(2)性質(zhì)探究:試探索垂美四邊形ABCD兩組對(duì)邊AB,CD與BC,AD之間的數(shù)量關(guān)系.
猜想結(jié)論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為放置在水平桌面上的臺(tái)燈的平面示意圖,燈臂AO長(zhǎng)為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺(tái)燈照亮水平面的寬度BC(不考慮其他因素,結(jié)果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26, ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,PD切⊙O于點(diǎn)D,過點(diǎn)B作BE垂直于PD,交PD的延長(zhǎng)線于點(diǎn)C,連接AD并延長(zhǎng),交BE于點(diǎn)E.
(1)求證:AB=BE;
(2)若PA=2,cosB= ,求⊙O半徑的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com