【題目】(1)若x,y都是實數(shù),且,求5x+13y+6的立方根;
(2)已知△ABC的三邊長分別為a,b,c,且滿足,求c的取值范圍。
【答案】(1)5;(2)2<c<4
【解析】
(1)根據(jù)二次根式有意義的條件可得出x的值,繼而得出y的值,求出x+3y的值后,即可得出它的立方根;
(2)已知等式左邊后三項利用完全平方公式變形,根據(jù)非負(fù)數(shù)之和為0,非負(fù)數(shù)分別為0求出a與b的值,即可得出第三邊c的范圍.
(1)∵要使中的二次根式有意義
∴x-3≥0且3-x≤0,
∴x≥3且x≤3
∴x=3,
∴=0+0+8=8,
∴5x+13y+6=15+104+6=125
∴5x+13y+6的立方根是;
(2)∵
∴+(b-3)2=0,
又∵≥0,(b-3)2≥0,
∴a-1=0,b-3=0,
∴a=1,b=3,
∴b-a<c<b+a
∴2<c<4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀把它均分成四個小長方形,然后按圖②的形狀拼成一個正方形.
(1)你認(rèn)為圖②中的陰影部分的正方形的邊長等于多少?
(2)請用兩種不同的方法求圖②中陰影部分的面積.
(3)觀察圖②你能寫出下列三個代數(shù)式之間的等量關(guān)系嗎?
代數(shù)式:(m+n)2,(m-n)2,mn.
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:
已知a+b=7,ab=5,求(a-b)2的值.(寫出過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形兩邊的長是3和4,第三邊的長是方程 -12x+35=0的根,則該三角形的周長為( 。
A.14
B.12
C.12或14
D.以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一農(nóng)戶要建一個矩形豬舍,豬舍的一邊利用長為12m的住房墻,另外三邊用25m長的建筑材料圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,所圍矩形豬舍的長、寬分別為多少時,豬舍面積為80m2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在桌面上,有6個完全相同的小正方體對成的一個幾何體,如圖所示.
(1)請畫出這個幾何體的三視圖.
(2)若將此幾何A的表面噴上紅漆(放在桌面上的一面不噴),則三個面上是紅色的小正方體有____個.
(3)若另一個幾何體B與幾何體A的主視圖和左視圖相同,而小正方體個數(shù)則比幾何體A多1個,則共有______種添法. 請在圖2中畫出幾何體B的俯視圖可能的兩種不同情形.
(4)若現(xiàn)在你的手頭還有一些相同的小正方體可添放在幾何體A上,要保持主視圖和左視圖不變,則最多可以添___________個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F分別為線段AC上兩個動點,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于M.說明:MB=MD,ME=MF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為BC上一點,∠BAD=∠ABC,∠ADC=∠ACD,若∠BAC=63°,試求∠DAC、∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點E.
(1)求∠CBE的度數(shù);
(2)過點D作DF∥BE,交AC的延長線于點F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、B(5,0)兩點,與y軸交于點C(0,5).
(1)求該拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)D是笫一象限內(nèi)拋物線上的一個動點(與點C、B不重合),過點D作DF⊥x軸于點F,交直線BC于點E,連結(jié)BD、CD.設(shè)點D的橫坐標(biāo)為m,△BCD的面積為S.
①求S關(guān)于m的函數(shù)關(guān)系式及自變量m的取值范圍;
②當(dāng)m為何值時,S有最大值,并求這個最大值;
③直線BC能否把△BDF分成面積之比為2:3的兩部分?若能,請求出點D的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com