13.-2016的相反數(shù)是(  )
A.-2016B.-$\frac{1}{2016}$C.$\frac{1}{2016}$D.2016

分析 根據(jù)一個(gè)數(shù)的相反數(shù)就是在這個(gè)數(shù)前面添上“-”號(hào),求解即可.

解答 解:-2016的相反數(shù)是2016,
故選:D.

點(diǎn)評(píng) 本題考查了相反數(shù)的意義,一個(gè)數(shù)的相反數(shù)就是在這個(gè)數(shù)前面添上“-”號(hào):一個(gè)正數(shù)的相反數(shù)是負(fù)數(shù),一個(gè)負(fù)數(shù)的相反數(shù)是正數(shù),0的相反數(shù)是0.不要把相反數(shù)的意義與倒數(shù)的意義混淆.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知△ABC中,點(diǎn)D在邊BC上,∠DAB=∠B,點(diǎn)E在邊AC上,滿足AE•CD=AD•CE.
(1)求證:DE∥AB;
(2)如果點(diǎn)F是DE延長線上一點(diǎn),且BD是DF和AB的比例中項(xiàng),聯(lián)結(jié)AF.求證:DF=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.單項(xiàng)式-$\frac{2abc}{3}$的系數(shù)和次數(shù)分別是( 。
A.-$\frac{2}{3}$,3B.-$\frac{2}{3}$,1C.-2,3D.-2,1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖,拋物線y=-$\frac{1}{2}$(x+1)(x-2k)(k>0)交x軸于A、B(A左B右),交y軸于點(diǎn)C,點(diǎn)D在第一象限拋物線的圖象上,且∠ABD=45°,△BCD的面積為$\frac{15}{2}$.
(1)求拋物線解析式;
(2)點(diǎn)P為第一象限拋物線的圖象上一點(diǎn),過點(diǎn)P作PH⊥x軸,垂足為H,PH交BD于E.把△PAH沿PH翻折,點(diǎn)A落在BH邊上F點(diǎn),設(shè)PF交BD于G,若EG=BG,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,設(shè)PF交拋物線于N,連接AN,Q在線段AN上,若∠PQG=2∠APQ.求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,點(diǎn)E在CD上,BC與AE交于點(diǎn)F,AB=CB,BE=BD,∠1=∠2.
(1)求證:△ABE≌△CBD;
(2)證明:∠1=∠3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,已知∠ADB=∠ADC,則不一定能使△ABD≌△ACD的條件是( 。
A.AB=ACB.BD=CDC.∠B=∠CD.∠BAD=∠CAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,邊長為4cm的等邊△ABC中,點(diǎn)P、Q分別是邊AB、BC上的動(dòng)點(diǎn)(端點(diǎn)除外),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,連接AQ,CP交于點(diǎn)M,在點(diǎn)P,Q運(yùn)動(dòng)的過程中.
(1)求證:△ABQ≌△CAP;
(2)∠QMC的大小是否發(fā)生變化?若無變化,求∠QMC的度數(shù);若有變化,請說明理由;
(3)連接PQ,當(dāng)點(diǎn)P,Q運(yùn)動(dòng)多少秒時(shí),△PBQ是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.從3,-1,$\frac{1}{2}$,1,-3這5個(gè)數(shù)中,隨機(jī)抽取一個(gè)數(shù)記為a,若數(shù)a使關(guān)于x的不等式組$\left\{\begin{array}{l}{\frac{1}{3}(2x+7)≥3}\\{x-a<0}\end{array}\right.$無解,且使關(guān)于x的分式方程$\frac{x}{x-3}$-$\frac{a-2}{3-x}$=-1有整數(shù)解,那么這5個(gè)數(shù)中所有滿足條件的a的值之積是(  )
A.$\frac{1}{2}$B.3C.-3D.-$\frac{3}{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在△ABC中,∠ACB=Rt∠,BC=6,AC=8,點(diǎn)D是AC的中點(diǎn),點(diǎn)P為AB邊上的動(dòng)點(diǎn)(P不與A重合),AP=t(t>0),PH⊥AC于點(diǎn)H,則PH=$\frac{3}{5}$t,連結(jié)DP并延長至點(diǎn)E,使得PE=PD,作點(diǎn)E關(guān)于AB的對稱點(diǎn)F,連結(jié)FH
(1)用t的代數(shù)式表示DH的長;
(2)求證:DF∥AB;
(3)若△DFH為等腰三角形,求t(0<t≤5)的值.(提示:以∠A為較小銳角的直角三角形的三邊比為3:4:5)

查看答案和解析>>

同步練習(xí)冊答案