【題目】下列命題正確的是( )
A. 一組對(duì)邊相等,另一組對(duì)邊平行的四邊形一定是平行四邊形
B. 對(duì)角線相等的四邊形一定是矩形
C. 兩條對(duì)角線互相垂直的四邊形一定是菱形
D. 兩條對(duì)角線相等且互相垂直平分的四邊形一定是正方形
【答案】D
【解析】試題A、一組對(duì)邊相等,另一組對(duì)邊平行的四邊形不一定為平行四邊形,例如等腰梯形滿足一組對(duì)邊相等,另一組對(duì)邊平行,但不是平行四邊形;
B、對(duì)角線相等的四邊形不一定為矩形,例題等腰梯形的對(duì)角線相等,但不是矩形,應(yīng)改為對(duì)角線相等的平行四邊形為矩形;
C、對(duì)角線互相垂直的四邊形不一定為菱形,例如:畫出圖形,如圖所示,AC與BD垂直,但是顯然ABCD不是菱形,應(yīng)改為對(duì)角線互相垂直的平行四邊形是菱形;
D、兩條對(duì)角線相等且互相垂直平分的四邊形是正方形,根據(jù)題意畫出相應(yīng)的圖形,如圖所示,根據(jù)對(duì)角線互相平分,得到四邊形為平行四邊形,再由平行四邊形的對(duì)角線相等,得到平行四邊形為矩形,最后根據(jù)矩形的對(duì)角線互相垂直得到矩形為正方形.
解:A、一組對(duì)邊相等,另一組對(duì)邊平行的四邊形不一定是平行四邊形,
例如等腰梯形,一組對(duì)邊平行,另一組對(duì)邊相等,不是平行四邊形,
故本選項(xiàng)為假命題;
B、對(duì)角線相等的四邊形不一定是矩形,
例如等腰梯形對(duì)角線相等,但不是矩形,
故本選項(xiàng)為假命題;
C、兩條對(duì)角線互相垂直的四邊形不一定是菱形,
如圖所示:AC⊥BD,但四邊形ABCD不是菱形,本選項(xiàng)為假命題;
D、兩條對(duì)角線相等且互相垂直平分的四邊形是正方形,
已知:四邊形ABCD,AC=BD,AC⊥BD,OA=OC,OB=OD,
求證:四邊形ABCD為正方形,
證明:∵OA=OC,OB=OD,
∴四邊形為平行四邊形,又AC=BD,
∴四邊形ABCD為矩形,
∵AC⊥BD,
∴四邊形ABCD為正方形,則本選項(xiàng)為真命題,
故選D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△中,、的角平分線、交于點(diǎn),延長(zhǎng)、,,,則下列結(jié)論中正確的個(gè)數(shù)是( )
①CP平分∠ACF; ②∠ABC+2∠APC=180°;
③∠ACB=2∠APB; 、苋PM⊥BE,PN⊥BC,則AM+CN=AC;
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在上,點(diǎn)在上,連接,過點(diǎn)作交于點(diǎn),過點(diǎn)作平分交于點(diǎn),且.
(1)求證:;
(2)若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),點(diǎn)B的坐標(biāo)為(1,0)、C(0,﹣3).
(1)求拋物線的解析式.
(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值.
(3)若點(diǎn)E在x軸上,點(diǎn)P在拋物線上,是否存在以A、C、E、P為頂點(diǎn)且以AC為一邊的平行四邊形?如存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)直角三角形斜邊長(zhǎng)為,內(nèi)切圓半徑為,則這個(gè)三角形周長(zhǎng)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程
(1)求證:不論k取什么實(shí)數(shù)值,這個(gè)方程總有實(shí)數(shù)根;
(2)若等腰三角形ABC的一邊長(zhǎng)為,另兩邊的長(zhǎng)b、c恰好是這個(gè)方程的兩個(gè)根,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,在等腰△ABC 中,AB=AC,點(diǎn) D,E 分別為 BC,AB 的中點(diǎn),連接 AD.在線段 AD 上任取一點(diǎn) P,連接 PB,PE.若 BC=4,AD=6,設(shè) PD=x(當(dāng)點(diǎn) P 與點(diǎn) D 重合時(shí),x 的值為 0),PB+PE=y.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y 隨自變量x 的變化而變化的規(guī)律進(jìn)行了探究. 下面是小明的探究過程,請(qǐng)補(bǔ)充完整:
(1)通過取點(diǎn)、畫圖、計(jì)算,得到了 x 與 y 的幾組值,如下表:
x | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y | 5.2 | 4.2 | 4.6 | 5.9 | 7.6 | 9.5 |
說明:補(bǔ)全表格時(shí),相關(guān)數(shù)值保留一位小數(shù).(參考數(shù)據(jù):≈1.414,≈1.732,≈2.236)
(2)建立平面直角坐標(biāo)系(圖 2),描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)求函數(shù) y 的最小值(保留一位小數(shù)),此時(shí)點(diǎn) P 在圖 1 中的什么位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在雙曲線y=上,點(diǎn)B在雙曲線y=(k≠0)上,AB∥x軸,過點(diǎn)A作AD⊥x軸于D.連接OB,與AD相交于點(diǎn)C,若AC=2CD,則k=__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com