【題目】如圖,已知中,,過點作,過作交于,連接.
(1)求證:;
(2)若,,,求平行四邊形的面積.
【答案】(1)見詳解;(2).
【解析】
(1)由AB=AC,則∠B=∠ACD,由,,則四邊形ABDE是平行四邊形,則AE=BD,∠EAC=∠ACD=∠B,根據(jù)SAS即可得到結(jié)論成立;
(2)過點A作AF⊥BC于點F,設AF=x,則AB=2x,DF=x,利用勾股定理建立方程,即可求出x,然后計算面積即可.
(1)證明:∵在中,,
∴∠B=∠ACD,
∵,
∴∠EAC=∠ACD=∠B,
∵,
∴四邊形ABDE是平行四邊形,
∴AE=BD,
∴(SAS);
(2)解:如圖,過點A作AF⊥BC于點F,
∴△ABF和△ADF是直角三角形,設AF=x,
∵,,
∴AB=2x,DF=x,
∵BF=BD+DF,
∴,
整理得:,
解得:,,
經(jīng)檢驗,均為方程的根,
∵,不符合題意,舍去;
∴,
∴平行四邊形的面積為:;
科目:初中數(shù)學 來源: 題型:
【題目】定義:一個自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱它為“下滑數(shù)”(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個,恰好是“下滑數(shù)”的概率為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,過點E作EF∥CD交BC的延長線于點F,連接CD.
(1)求證:DE=CF;
(2)求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】音樂噴泉(圖1)可以使噴水造型隨音樂的節(jié)奏起伏變化而變化.某種音樂噴泉形狀如拋物線,設其出水口為原點,出水口離岸邊18m,音樂變化時,拋物線的頂點在直線y=kx上變動,從而產(chǎn)生一組不同的拋物線(圖2),這組拋物線的統(tǒng)一形式為y=ax2+bx.
(1)若已知k=1,且噴出的拋物線水線最大高度達3m,求此時a、b的值;
(2)若k=1,噴出的水恰好達到岸邊,則此時噴出的拋物線水線最大高度是多少米?
(3)若k=3,a=﹣,則噴出的拋物線水線能否達到岸邊?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1: ,則大樓AB的高度為________米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某消防隊在一居民樓前進行演習,消防員利用云梯成功救出點B處的求救者后,又發(fā)現(xiàn)點B正上方點C處還有一名求救者.在消防車上點A處測得點B和點C的仰角分別是45°和65°,點A距地面2.5米,點B距地面10.5米.為救出點C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 是半徑為的⊙的直徑, 是圓上異于, 的任意一點, 的平分線交⊙于點,連接和,△的中位線所在的直線與⊙相交于點、,則的長是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC的平分線與∠ACB的外角的平分線相交于點P,連接AP.
(1)求證:PA平分∠BAC的外角∠CAM;
(2)過點C作CE⊥AP,E是垂足,并延長CE交BM于點D.求證:CE=ED.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題正確的是( )
A. 一組對邊相等,另一組對邊平行的四邊形一定是平行四邊形
B. 對角線相等的四邊形一定是矩形
C. 兩條對角線互相垂直的四邊形一定是菱形
D. 兩條對角線相等且互相垂直平分的四邊形一定是正方形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com