【題目】如圖,⊙ORtABC的外接圓,AB為直徑,∠ABC=30°,CD是⊙O的切線,EAC延長線上一點(diǎn),EDABF.

(1)判斷DCE的形狀;

(2)設(shè)⊙O的半徑為1,且OF=,求證:DCE≌△OCB.

【答案】(1)CDE為等腰三角形;(2)證明見解析.

【解析】試題分析:(1)ABC=30°可得BAC=60°,結(jié)合DEAB,可得AED的度數(shù);根據(jù)弦切角定理可得DCB=60°,再結(jié)合ACB=90°,從而可得DCE的度數(shù);

(2)由(1)的證明過程可得ABC=∠OCB=∠DCE=∠CED=30°,要證明BOC≌△EDC,只要證明BC=CE,接下來由圓半徑為1可得AB的長,結(jié)合含30度角直角三角形的性質(zhì)以及勾股定理可得AC、BC的長,在Rt△AEF中,先求得AF的長,再利用含30度角直角三角形的性質(zhì)可得AE的長,繼而得到CE的長,從而可證CDE≌△COB..

(1)解:∵∠ABC=30°,

∴∠BAC=60°.

又∵OA=OC,

∴△AOC是正三角形.

又∵CD是切線,

∴∠OCD=90°.

∴∠DCE=180°﹣60°﹣90°=30°.

EDABF,

∴∠CED=90°﹣BAC=30°.

CDE為等腰三角形.

(2)證明:∵CD是⊙O的切線,

∴∠OCD=90°,

∵∠BAC=60°,AO=CO,

∴∠OCA=60°,∵∠DCE=30°.

A,C,E三點(diǎn)同線

ABC中,

AB=2,AC=AO=1,

BC==

OF=,

AF=AO+OF=

又∵∠AEF=30°,

AE=2AF=+1,

CE=AE﹣AC==BC,

而∠OCB=ACB﹣ACO=90°﹣60°=30°=ABC;

CDE≌△COB.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司準(zhǔn)備投資開發(fā)AB兩種新產(chǎn)品,通過市場調(diào)研發(fā)現(xiàn)如果單獨(dú)投資A種產(chǎn)品,則所獲利潤yA(萬元)與投資金額x(萬元)之間滿足正比例函數(shù)關(guān)系yA=kx;如果單獨(dú)投資B種產(chǎn)品則所獲利潤yB(萬元)與投資金額x(萬元)之間滿足二次函數(shù)關(guān)系yB=ax2+bx.根據(jù)公司信息部的報(bào)告,yAyB(萬元)與投資金額x(萬元)的部分對(duì)應(yīng)值(如下表)

(1)求正比例函數(shù)和二次函數(shù)的解析式;

(2)如果公司準(zhǔn)備投資20萬元同時(shí)開發(fā)AB兩種新產(chǎn)品,請(qǐng)你設(shè)計(jì)一個(gè)能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著移動(dòng)計(jì)算技術(shù)和無線網(wǎng)絡(luò)的快速發(fā)展,移動(dòng)學(xué)習(xí)方式越來越引起人們的關(guān)注,某校計(jì)劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機(jī)抽取了部分學(xué)生,對(duì)其家庭中擁有的移動(dòng)設(shè)備的情況進(jìn)行調(diào)查,并繪制出如下的統(tǒng)計(jì)圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:

(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為   ,圖①中m的值為   ;

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計(jì)該校1500名學(xué)生家庭中擁有3臺(tái)移動(dòng)設(shè)備的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:探究一次函數(shù)y=kx+k+2k是不為0常數(shù))圖象的共性特點(diǎn),探究過程:小明嘗試把x=-1代入時(shí),發(fā)現(xiàn)可以消去k,竟然求出了y=2.老師問:結(jié)合一次函數(shù)圖象,這說明了什么?小組討論得出:無論k取何值,一次函數(shù)y=kx+k+2的圖象一定經(jīng)過定點(diǎn)(-12),老師:如果一次函數(shù)的圖象是經(jīng)過某一個(gè)定點(diǎn)的直線,那么我們把像這樣的一次函數(shù)的圖象定義為點(diǎn)旋轉(zhuǎn)直線.已知一次函數(shù)y=k+3x+k-1)的圖象是點(diǎn)旋轉(zhuǎn)直線

1)一次函數(shù)y=k+3x+k-1)的圖象經(jīng)過的定點(diǎn)P的坐標(biāo)是__________

2)已知一次函數(shù)y=k+3x+k-1)的圖象與x軸、y軸分別相交于點(diǎn)A、B

①若OBP的面積為3,求k值;

②若AOB的面積為1,求k值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線a經(jīng)過點(diǎn)A(1,6),和點(diǎn)B(﹣3,﹣2).

(1)求直線a的解析式;

(2)求直線與坐標(biāo)軸的交點(diǎn)坐標(biāo);

(3)求S△AOB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】做大小兩個(gè)長方體紙盒,尺寸如下(單位:cm

小紙盒

大紙盒

(1)做這兩個(gè)紙盒共用料多少平方厘米?

(2)做大紙盒比做小紙盒多用料多少平方厘米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校根據(jù)課程設(shè)置要求,開設(shè)了數(shù)學(xué)類拓展性課程,為了解學(xué)生最喜歡的課程內(nèi)容,隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查(每人必須且只選中其中一項(xiàng)),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中信息回答問題:

1)求m,n的值.

2)補(bǔ)全條形統(tǒng)計(jì)圖.

3)該校共有1200名學(xué)生,試估計(jì)全校最喜歡“數(shù)學(xué)史話”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)EAB上的點(diǎn)(不與A,B重合),△ADE與△FDE關(guān)于DE對(duì)稱,作射線CF,與DE的延長線相交于點(diǎn)G,連接AG

1)當(dāng)∠ADE=15°時(shí),求∠DGC的度數(shù);

2)若點(diǎn)EAB上移動(dòng),請(qǐng)你判斷∠DGC的度數(shù)是否發(fā)生變化,若不變化,請(qǐng)證明你的結(jié)論;若會(huì)發(fā)生變化,請(qǐng)說明理由;

3)如圖2 當(dāng)點(diǎn)F落在對(duì)角線BD上時(shí),點(diǎn)MDE的中點(diǎn),連接AM,FM,請(qǐng)你判斷四邊形AGFM的形狀,并證明你的結(jié)論。

查看答案和解析>>

同步練習(xí)冊(cè)答案