【題目】某公司準備投資開發(fā)A、B兩種新產品通過市場調研發(fā)現(xiàn)如果單獨投資A種產品,則所獲利潤yA(萬元)與投資金額x(萬元)之間滿足正比例函數(shù)關系yA=kx;如果單獨投資B種產品,則所獲利潤yB(萬元)與投資金額x(萬元)之間滿足二次函數(shù)關系yB=ax2+bx.根據(jù)公司信息部的報告,yA、yB(萬元)與投資金額x(萬元)的部分對應值(如下表)

(1)求正比例函數(shù)和二次函數(shù)的解析式

(2)如果公司準備投資20萬元同時開發(fā)A、B兩種新產品,請你設計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少萬元?

【答案】(1)yA=0.6x,yB=﹣0.2x2+3x;(2)投資6萬元生產B產品,14萬元生產A產品可獲得最大利潤19.2萬元

【解析】試題分析:(1)根據(jù)表格提供的數(shù)據(jù),列方程組易求出表達式;

2)設投資開發(fā)B產品的金額為x萬元,總利潤y萬元列出利潤表達式,運用函數(shù)性質解答即可.

試題解析:(1)把點(1,0.6)代入yA=kxk=0.6,則該正比例函數(shù)的解析式為yA=0.6x把點(1,2.8)和點(5,10)代入yB=ax2+bx.得解得,則該二次函數(shù)的解析式為yB=﹣0.2x2+3x;

2)設投資開發(fā)B產品的金額為x萬元總利潤為y萬元,y=0.6x20x+(﹣0.2x2+3x

=﹣0.2x2+2.4x+12=﹣0.2x62+19.2

∴當x=6,y最大=19.2

投資6萬元生產B產品,14萬元生產A產品可獲得最大利潤19.2萬元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小慧根據(jù)學習函數(shù)的經驗,對函數(shù)y=|x﹣1|的圖象與性質進行了探究.下面是小慧的探究過程,請補充完成:

(1)函數(shù)y=|x﹣1|的自變量x的取值范圍是   ;

(2)列表,找出y與x的幾組對應值.

x

﹣1

0

1

2

3

y

b

1

0

1

2

其中,b=   ;

(3)在平面直角坐標系xOy中,描出以上表中各對對應值為坐標的點,并畫出該函數(shù)的圖象;

(4)寫出該函數(shù)的一條性質:   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD是菱形,AB=4,ABC=60°,EAF的兩邊分別與射線CB,DC相交于點E,F(xiàn),且EAF=60°

1如圖1,當點E是線段CB的中點時,直接寫出線段AE,EF,AF之間的數(shù)量關系;

2如圖2,當點E是線段CB上任意一點時點E不與B、C重合,求證:BE=CF;

3如圖3,當點E在線段CB的延長線上,且EAB=15°時,求點F到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E F分別為邊AB、CD的中點,BD是對角線.過點有作AGDBCB的延長線于點G.

(1)求證:△ADE≌△CBF;

(2)若∠G=90° ,求證:四邊形DEBF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為矩形ABCD對角線的交點,DEACCEBD

(1)試判斷四邊形OCED的形狀,并說明理由;

(2)若AB=6,BC=8,求四邊形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(﹣4,8)和點B(2,n)在拋物線y=ax2上.

(1)求a的值及點B關于x軸對稱點P的坐標,并在x軸上找一點Q使得AQ+QB最短,求出點Q的坐標

(2)平移拋物線y=ax2,記平移后點A的對應點為A′,B的對應點為B′,C(﹣2,0)和點D(﹣4,0)是x軸上的兩個定點.

當拋物線向左平移到某個位置時,AC+CB最短,求此時拋物線的函數(shù)解析式;

當拋物線向左或向右平移時,是否存在某個位置,使四邊形ABCD的周長最短?若存在,求出此時拋物線的函數(shù)解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把邊長為1的正方形ABCD繞頂點A逆時針旋轉30°到正方形AB′C′D′,則它們的公共部分的面積等于_____

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/13/1923101670465536/1923902127538176/STEM/3534c7f6f1a5489684ae6308493b71da.png]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】貨輪上卸下若干只箱子,其總重量為10t,每只箱子的重量不超過1t,為保證能把這些箱子一次運走,問至少需要多少輛載重3t的汽車?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙ORtABC的外接圓,AB為直徑,∠ABC=30°,CD是⊙O的切線,EAC延長線上一點,EDABF.

(1)判斷DCE的形狀;

(2)設⊙O的半徑為1,且OF=,求證:DCE≌△OCB.

查看答案和解析>>

同步練習冊答案