【題目】閱讀下面材料

小胖同學(xué)遇到這樣一個(gè)問題:如圖1,ABC中,點(diǎn)DBC上,點(diǎn)FCA延長線上的點(diǎn),連接DFABG.過點(diǎn)DDEAC,垂足為E.若∠AGD2C,DFAB,求的值.

小胖通過計(jì)算角度發(fā)現(xiàn)∠BGD2CDE,于是作出點(diǎn)C關(guān)于DE的對稱點(diǎn)C,使得∠CDC=∠BGD,進(jìn)而得出∠CDF=∠B,接著截取BKDC,得出一組全等三角形.

1)請沿著小胖的思路繼續(xù)完成此題的解答過程:

2)參考小胖的解題方法完成下面問題:

如圖3,在ABC中,∠ACB2BBD2CD,∠BAD=∠CED,探索AE、CE、CD三條線段的數(shù)量關(guān)系.

【答案】(1);(2)AECECD

【解析】

1)根據(jù)SAS可證明ABK≌△FDC',得出AK=FC',∠AKB=FC'D,證明CE=C′E,則可求出

2)作∠BDF=BABF點(diǎn),延長BCG點(diǎn),使得CG=CA,證明CED∽△FAD,得出比例線段,設(shè)CD=xBD=2x,CE=y,可得出DG=2y,則CG=AC=DG=2y-x,可得出AE=y-x=CE-CD

1)∵BKCDCD,∠CDF=∠BDFAB,

∴△ABK≌△FDC'SAS),

AKFC',∠AKB=∠FC'D,

∴∠C=∠AKC,

AKACFC,

DECC',且DCDC',

CECE

AF2CE,

2AECECD

如圖,作∠BDF=∠BABF點(diǎn),延長BCG點(diǎn),使得CGCA,

DFFB

∴∠FDB=∠B,

∴∠G=∠CAG=∠B=∠FDB,

DFAG,∠ECD2B,

∴∠AFD=∠ECD,∠CED=∠FAD,

∴△CED∽△FAD

,

設(shè)CDx,BD2xCEy,

,

DG2y,

CGACDGCD2yx,

AEACCEyxCECD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC 中,∠C90°,以BC為直徑的半圓交AB于點(diǎn)D,O是該半圓所在圓的圓心,E為線段AC上一點(diǎn),且ED=EA.

1)求證:ED是⊙O的切線;

2)若,∠A=30°,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,以AC為一邊向外作等邊三角形ACD,點(diǎn)EAB的中點(diǎn),連結(jié)DE

1)證明DE∥CB;

2)探索ACAB滿足怎樣的數(shù)量關(guān)系時(shí),四邊形DCBE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)y=|a|x2+bx+c的圖象經(jīng)過A(m,n)、B(0,y1)、C(3m,n)、D(, y2)E(2,y3),則y1y2、y3的大小關(guān)系是( ).

A. y1< y2< y3B. y1 < y3< y2C. y3< y2< y1D. y2< y3< y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象與x軸交于A(﹣2,0)、B(4,0)兩點(diǎn),且函數(shù)經(jīng)過點(diǎn)(3,10).

(1)求二次函數(shù)的解析式;

(2)設(shè)這個(gè)二次函數(shù)的頂點(diǎn)為P,求△ABP的面積;

(3)當(dāng)x為何值時(shí),y≤0.(請直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,A(08)、B(60) .動點(diǎn)PA點(diǎn)出發(fā),沿y軸負(fù)半軸方向運(yùn)動,速度每秒2個(gè)單位長度,動點(diǎn)QB點(diǎn)出發(fā),沿BA方向向A點(diǎn)運(yùn)動,速度每秒1個(gè)單位長度.兩點(diǎn)同時(shí)出發(fā),Q點(diǎn)到達(dá)A點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動,運(yùn)動時(shí)間為t.

(1)當(dāng)APQ面積為12,求t的值.

(2)當(dāng)APQ的外心(三角形的外心是三角形三邊垂直平分線的交點(diǎn))在APQ的邊上時(shí),求t.

(3)Q點(diǎn)在直線AB上運(yùn)動,過Q點(diǎn)作QHx軸,垂足為H,當(dāng)QBHABO的相似比為12時(shí),直接寫出Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示O是正方形ABCD的外接圓,P是O上不與A、B重合的任意一點(diǎn),APB等于( )

A45° B.60° C.45° 或135° D.60° 或120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一張矩形紙片ABCD按如圖方式折疊,使頂點(diǎn)B和頂點(diǎn)D重合,折痕為EF,若BF=4, AE=2,則∠DEF的度數(shù)是_____。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn)ABC的三個(gè)頂點(diǎn)A,B,C都在格點(diǎn)上ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°得到AB′C′

1在正方形網(wǎng)格中,畫出AB′C′;

2計(jì)算線段AB在變換到AB′的過程中掃過的區(qū)域的面積

查看答案和解析>>

同步練習(xí)冊答案