【題目】已知二次函數(shù)的圖象與x軸交于A(﹣2,0)、B(4,0)兩點(diǎn),且函數(shù)經(jīng)過點(diǎn)(3,10).
(1)求二次函數(shù)的解析式;
(2)設(shè)這個二次函數(shù)的頂點(diǎn)為P,求△ABP的面積;
(3)當(dāng)x為何值時,y≤0.(請直接寫出結(jié)果)
【答案】(1)y=﹣2x2+4x+16;(2)54;(3)x≤﹣2或x≥4.
【解析】
(1)因?yàn)?/span>A(﹣2,0)、B(4,0)兩點(diǎn)在x軸上,所以可設(shè)設(shè)拋物線解析式為y=a(x+2)(x﹣4),然后把(3,10)代入求解;
(2)把化為頂點(diǎn)式即可求出頂點(diǎn)坐標(biāo),然后根據(jù)三角形面積公式即可求出△ABP的面積;
(3)根據(jù)二次函數(shù)的圖像與性質(zhì)即可解答.
(1)設(shè)拋物線解析式為y=a(x+2)(x﹣4),
把(3,10)代入得a×5×(﹣1)=10,解得a=﹣2,
所以拋物線解析式為y=﹣2(x+2)(x﹣4),
即y=﹣2x2+4x+16;
(2)∵y=﹣2x2+4x+16=﹣2(x﹣1)2+18,
∴頂點(diǎn)P的坐標(biāo)為(1,18),
∴△ABP的面積=×(4+2)×18=54;
(3)x≤﹣2或x≥4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】草莓是諸暨盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.
(1)求y與x的函數(shù)解析式
(2)設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,D為△ABC內(nèi)一點(diǎn), ∠BAD=15°,AD=AC,CE⊥AD于E,且CE=5.
(1)求BC的長;
(2)求證:BD=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=﹣x2+1的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,下列說法錯誤的是( ).
A. 點(diǎn)C的坐標(biāo)是(0,1) B. 線段AB的長為2
C. △ABC是等腰直角三角形 D. 當(dāng)x>0時,y隨x增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(﹣2,y1),(﹣5,y2),(1,y3)在函數(shù)y=2x2+8x+7的圖象上,則y1,y2,y3的大小關(guān)系為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長方形ABCD沿對角線BD折疊,重合部分為△EBD.
(1)求證:△EBD為等腰三角形;
(2)若AB=2,BC=8,求AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AD與BE是△ABC的角平分線,D,E分別在BC,AC上,若AD=AB,BE=BC,則∠C=( 。
A. 69° B. C. D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的頂點(diǎn)在坐標(biāo)原點(diǎn),,分別在軸,軸的正半軸上,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,當(dāng)此矩形繞點(diǎn)旋轉(zhuǎn)到如圖位置時的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,動點(diǎn)C在⊙O的弦AB上運(yùn)動,AB=,連接OC,CD⊥OC交⊙O于點(diǎn)D.則CD的最大值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com