【題目】如圖,已知正方形ABCD的邊長為12,E是BC中點(diǎn),將正方形邊CD沿DE折疊到DF,將AD折疊,使AD與DF重合,折痕交AB于G,連接BF,CF,則下列結(jié)論:①G、F、E三點(diǎn)共線;②BG=8;③△BEF∽△CDF;④S△BFG=.其中正確的有( )
A. ①② B. ①②③ C. ②③④ D. ①②③④
【答案】D
【解析】分析:根據(jù)已知條件易證∠GFD+∠DFE=180°,即可得點(diǎn)G、F、E共線,①正確;設(shè)BG=x,則GF=AG=12-x,Rt△BEG中根據(jù)勾股定理求得x的值,即可判定②正確;根據(jù)折疊的性質(zhì)和已知條件證得∠CDF=∠BEF,再由BE=FE,F(xiàn)D=CD,即可判定△BEF∽△CDF,③正確;在Rt△BEG中,根據(jù)面積法可得EG邊上的高為 ,根據(jù)三角形的面積公式即可求得S△BFG=,④正確.
詳解:由題意得∠GFD=∠DFE=90°,
∴∠GFD+∠DFE=180°,故點(diǎn)G、F、E共線,故①正確;
設(shè)BG=x,則GF=AG=12-x,
由題意得:EF=CE=BE=6,
在Rt△BEG中,有BG2+BE2=EG2,
解得x=8,故②正確;
在四邊形DCEF中,
∵∠DFE=∠DCE=90°,
∴∠CEF+∠CDF=180°,
又∠CEF+∠BEF=180°,
∴∠CDF=∠BEF,
∵BE=FE,FD=CD,
∴△BEF∽△CDF,故③正確;
在Rt△BEG中,根據(jù)面積法可得EG邊上的高為 ,又FG=4,∴S△BFG=,故④正確;
所以正確的有①②③④,故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=x﹣與x軸交于點(diǎn)B1,以OB1為一邊在OB1上方作等邊三角形A1OB1,過點(diǎn)A1作A1B2平行于x軸,交直線l于點(diǎn)B2,以A1B2為一邊在A1B2上方作等邊三角形A2A1B2,過點(diǎn)A2作A2B3平行于x軸,交直線l于點(diǎn)B3,以A2B3為一邊在A2B3上方作等邊三角形A3A2B3,…,則△A2017B2018A2018的周長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣2,與x軸的一個(gè)交點(diǎn)在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示,則下列結(jié)論:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t為實(shí)數(shù));⑤點(diǎn)(,),(,),(,)是該拋物線上的點(diǎn),則,正確的個(gè)數(shù)有( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】是線段上任一點(diǎn),,兩點(diǎn)分別從同時(shí)向點(diǎn)運(yùn)動(dòng),且點(diǎn)的運(yùn)動(dòng)速度為,點(diǎn)的運(yùn)動(dòng)速度為,運(yùn)動(dòng)的時(shí)間為.
(1)若,
①運(yùn)動(dòng)后,求的長;
②當(dāng)在線段上運(yùn)動(dòng)時(shí),試說明;
(2)如果時(shí),,試探索的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】世界因愛而美好,在今年我校舉行的“獻(xiàn)愛心”捐款活動(dòng)中,八年級二班40名學(xué)生積極參加捐款活動(dòng),班長將捐款情況進(jìn)行了統(tǒng)計(jì),并繪制成了統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,捐款金額的眾數(shù)、中位數(shù)、平均數(shù)分別是( )
A. 20、20、20 B. 30、30、31
C. 20、30、31 D. 30、30、30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 ABCD 中, G 為 BC 邊上一點(diǎn), BE AG 于 E , DF AG 于 F ,連接 DE .
(1)求證: ABE DAF ;
(2)若 AF 1,四邊形 ABED 的面積為6 ,求 EF 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,直線AB、CD相交于點(diǎn)O,EO⊥CD于O.
(1)若∠AOC=36°,求∠BOE的度數(shù);
(2)若∠BOD:∠BOC=1:5,求∠AOE的度數(shù);
(3)在(2)的條件下,請你過點(diǎn)O畫直線MN⊥AB,并在直線MN上取一點(diǎn)F(點(diǎn)F與O不重合),然后直接寫出∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上有三個(gè)點(diǎn),,,為原點(diǎn),點(diǎn)表示數(shù),點(diǎn)表示數(shù),點(diǎn)表示數(shù).且、滿足.
(1)填空: ; .
(2)點(diǎn)把線段分成兩條線段,其中一條是另一條線段的3倍,則的值為: .
(3)著為2,動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒2個(gè)單位長度速度沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒3個(gè)單位長度速度沿?cái)?shù)軸正方向運(yùn)動(dòng),求運(yùn)動(dòng)多少秒時(shí)點(diǎn)把線段分成兩條線段且其中一條是另一條線段的3倍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)加工廠計(jì)劃為某開發(fā)公司加工一批產(chǎn)品,已知甲、乙兩個(gè)工廠每天分別能加工這種產(chǎn)品16件和24件,且單獨(dú)加工這批產(chǎn)品甲廠比乙廠要多用20天,已知由甲廠單獨(dú)做,公司需付甲廠每天費(fèi)用180元;若由乙廠單獨(dú)做,公司需付乙廠每天費(fèi)用220元.
(1)求加工的這批產(chǎn)品共有多少件?
(2)若由一個(gè)加工廠單獨(dú)加工完成,選用哪個(gè)加工廠費(fèi)用較低?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com