【題目】如圖,在正方形ABCD中,P是對角線AC上一點(不與點AC重合),連接PD,過點PPEPD交射線BC于點E

1)如圖1,求證:PDPE

2)若正方形ABCD的邊長為4,,求CE長.

【答案】1)證明見解析;(22.

【解析】

1)如圖1中,連接PB,利用APB≌△APD推出PB=PD,再證明PB=PE即可解決問題.

2)可通過構(gòu)建等腰直角三角形來求解.過點PGFAB,分別交AD、BCGF,那么AGPPFC都是等腰直角三角形,四邊形ABFG和四邊形GFCD都是矩形,可得AG=BF=PG=1.而PB=PE,PFBE,那么根據(jù)等腰三角形三線合一的特點可得出BF=FE=AG=PG,從而CE=BC-2AG=4-2=2

1)如圖1中,連接PB

∵四邊形ABCD是正方形,

AB=AD,∠BAC=DAC=45°,∠ABC=ADC=BCD=90°

APBAPD中,

,

∴△APB≌△APD,

PB=PD,∠ADP=ABP,

∴∠PBC=PDC,

∵∠DPE=BCD=90°,

∴∠PEC+PDC=180°,∠PEB+PEC=180°

∴∠PEB=PDC,

∴∠PBC=PEB

PB=PE,

PD=PE

2)過點PGFAB,分別交AD、BCG、F.如圖所示.

∵四邊形ABCD是正方形,

∴四邊形ABFG和四邊形GFCD都是矩形,

AGPPFC都是等腰直角三角形.

又∵AP=AD=4,

GP=AG=BF=1GD=FC=FP=41=3,

又∵PB=PEPFBE

BF=FE,

CE=4-2=2.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】定義新運算:對于任意實數(shù)a,b,都有ab=a(a﹣b)+1,等式右邊是通常的加法,減法及乘法運算.比如:25=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5

(1)求3(﹣2)的值;

(2)若3x的值小于16,求x的取值范圍,并在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠一周計劃每日生產(chǎn)自行車100輛,由于工人實行輪休,每日上班人數(shù)不一定相等,實際每日生產(chǎn)量與計劃量相比情況如下表(以計劃量為標準,增加的車輛數(shù)記為正數(shù),減少的車輛數(shù)記為負數(shù)):

星期

增減(輛)

1

+3

2

4

+7

5

10

1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?

2)本周總的生產(chǎn)量是多少輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著互聯(lián)網(wǎng)的發(fā)展,農(nóng)副產(chǎn)品也可以網(wǎng)上銷售經(jīng)過一段時間的精準幫扶,小張也建起了自家的網(wǎng)絡(luò)商店(簡稱網(wǎng)店),他應(yīng)用網(wǎng)店將種植的蘋果和桃子銷往全國各地.其中蘋果每箱以上的公斤左右包郵元;桃子每箱公斤左右包郵.請你回答下列問題:

1)網(wǎng)購一箱蘋果和一箱桃子共應(yīng)支付___________元;

2)某社區(qū)重陽節(jié)慰問困難居民,計劃在這家網(wǎng)店購買箱蘋果和箱桃子,應(yīng)支付的費用可表示為______________________元;

3)因為水果不耐貯存,小麗和兩個同學合起來在這家網(wǎng)店購買了兩箱蘋果和一箱桃子,然后平均分配,小麗需支付多錢?她可以分到幾個蘋果和幾個桃子?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,正方形OABC的頂點O與原點重合,頂點AC分別在x軸,y軸上,反比例函數(shù)的圖象與正方形的兩邊ABBC分別交于點M,N,NDx軸,垂足為D,連接OM,ON,MN.下列結(jié)論:①△OCN≌△OAM;ONMN;③四邊形DAMN與△MON面積相等;④若∠MON45°,MN2,則點C的坐標為(0, 1)其中正確結(jié)論的序號是____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,AB=2,A=120°,點P,Q,K分別為線段BC,CD,BD上的任意一點,則PK+QK的最小值為【 】

 A.1 B. C. 2 D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形)。

(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1

(2)將△ABC繞著點A順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2,并直接寫出點B2、C2的坐標;

(3)在第(2)問中,點B旋轉(zhuǎn)到點B2的過程中運動的路徑長是_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知Rt△ABC中,∠C=90°.

(1)已知 a=4, b=2,求 c ;

(2)已知∠A=60°, c=2+4,求 b ;

(3)已知 a =10, c =10,求∠B;

(4)已知 b =35,∠A=45°,求 a .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某高中學校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級(3)班學生即將所穿校服型號情況進行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6種型號).

根據(jù)以上信息,解答下列問題:

(1)該班共有 名學生?其中穿175型校服的學生有 人.

(2)在條形統(tǒng)計圖中,請把空缺的部分補充完整;

(3)在扇形統(tǒng)計圖中,請計算185型校服所對應(yīng)扇形圓心角度數(shù)為 ;

(4)該班學生所穿校服型號的眾數(shù)是 ,中位數(shù)是 .

查看答案和解析>>

同步練習冊答案