【題目】如圖,Rt△ACB中,∠ACB=90°,AC=BC,E點為射線CB上一動點,連結(jié)AE,作AF⊥AE且AF=AE.
(1)如圖1,過F點作FD⊥AC交AC于D點,求證:FD=BC;
(2)如圖2,連結(jié)BF交AC于G點,若AG=3,CG=1,求證:E點為BC中點;
(3)當E點在射線CB上,連結(jié)BF與直線AC交于G點,若BC=4,BE=3,則= (直接寫出結(jié)果)
【答案】(1)見解析;(2)見解析;(3)或
【解析】
(1)證明△AFD≌△EAC,根據(jù)全等三角形的性質(zhì)得到DF=AC,等量代換證明結(jié)論;
(2)作FD⊥AC于D,證明△FDG≌△BCG,得到DG=CG,求出CE,CB的長,得到答案;
(3)過F作FD⊥AG的延長線交于點D,根據(jù)全等三角形的性質(zhì)得到CG=GD,AD=CE=7,代入計算即可.
(1)∵FD⊥AC,
∴∠FDA=90°,
∴∠DFA+∠DAF=90°,
∠CAE+∠DAF=90°,
∴∠DFA=∠CAE,
在△AFD和△EAC中,
,
∴△AFD≌△EAC(AAS),
∴DF=AC,
∵AC=BC,
∴FD=BC;
(2)作FD⊥AC于D,
由(1)得,FD=AC=BC,AD=CE,
在△FDG和△BCG中,
,
∴△FDG≌△BCG(AAS),
∴DG=CG=1,
∴AD=2,
∴CE=2,
∵BC=AC=AG+CG=4,
∴E點為BC中點;
(3)當點E在CB的延長線上時,過F作FD⊥AG的延長線交于點D,
BC=AC=4,CE=CB+BE=7,
由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,
∴CG=GD,AD=CE=7,
∴,
∴,
當點E在線段BC上時,過F作FD⊥AG的延長線交于點D,
BC=AC=4,CE=CB-BE=1,
由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,
∴CG=GD,AD=CE=1,
∴,
∴,
故答案為:或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,與的平分線交于點,過點作交于點,交于點,那么下列結(jié)論:
①是等腰三角形;②;
③若,;④.
其中正確的有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中華文化,源遠流長,《西游記》《三國演義》《水滸傳》《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”.某校要求沒有讀過四大名著的學生進行選讀,將《西游記》、《三國演義》、《水滸傳》《紅樓夢》依次記為A、B、C、D,每本名著被選到的機會均等.
(1)學生小紅計劃選讀兩本名著,她恰好選讀《西游記》和《水滸傳》這兩本名著的概率為多少?
(2)若學生小明和小剛各計劃選讀一本名著,他們兩人恰好選讀同一本名著的概率為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【問題情境】
如圖1,四邊形ABCD是正方形,M是BC邊上的一點,E是CD邊的中點,AE平分∠DAM.
【探究展示】
(1)證明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.
【拓展延伸】
(3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請分別作出判斷,不需要證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,花叢中有一路燈桿AB. 在燈光下,小明在D點處的影長DE=3米,沿BD方向行走到達G點,DG=5米,這時小明的影長GH=5米. 如果小明的身高為1.7米,求路燈桿AB的高度(精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某縣為了落實中央的“強基惠民工程”,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15天,那么余下的工程由甲隊單獨完成還需5天.
(1)這項工程的規(guī)定時間是多少天?
(2)已知甲隊每天的施工費用為6500元,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,∠ABC=60°,過點B作AC的平行線交DC的延長線于點E.
(1) 求證:四邊形ABEC為菱形;
(2) 若AB=6,連接OE,求OE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖A、B、C是固定在桌面上的三根立柱,其中A柱上穿有三個大小不同的圓片,下面的直徑總比上面的大現(xiàn)想將這三個圓片移動到B柱上,要求每次只能移動一片叫移動一次,被移動的圓片只能放入A、B、C三個柱之一且較大的圓片不能疊在小片的上面,那么完成這件事情至少要移動圓片的次數(shù)是
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩班各推選10名同學進行投籃比賽,按照比賽規(guī)則,每人各投了10個球,兩個班選手的進球數(shù)統(tǒng)計如表,請根據(jù)表中數(shù)據(jù)解答下列問題
進球數(shù)/個 | 10 | 9 | 8 | 7 | 6 | 5 |
甲 | 1 | 1 | 1 | 4 | 0 | 3 |
乙 | 0 | 1 | 2 | 5 | 0 | 2 |
(1)分別寫出甲、乙兩班選手進球數(shù)的平均數(shù)、中位數(shù)與眾數(shù);
(2)如果要從這兩個班中選出一個班級參加學校的投籃比賽,爭取奪得總進球團體的第一名,你認為應該選擇哪個班?如果要爭取個人進球數(shù)進入學校前三名,你認為應該選擇哪個班?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com