【題目】如圖,在平面直角坐標(biāo)系中,邊長為1的正方形OA1B1C1的兩邊在坐標(biāo)軸上,以它的對(duì)角線OB1為邊作正方形OB1B2C2 , 再以正方形OB1B2C2的對(duì)角線OB2為邊作正方形OB2B3C3 , 以此類推…、則正方形OB2015B2016C2016的頂點(diǎn)B2016的坐標(biāo)是 .
【答案】(21008 , 0)
【解析】解:∵正方形OA1B1C1邊長為1,∴OB1= ,
∵正方形OB1B2C2是正方形OA1B1C1的對(duì)角線OB1為邊,
∴OB2=2,
∴B2點(diǎn)坐標(biāo)為(0,2),
同理可知OB3=2 ,
∴B3點(diǎn)坐標(biāo)為(﹣2,2),
同理可知OB4=4,B4點(diǎn)坐標(biāo)為(﹣4,0),
B5點(diǎn)坐標(biāo)為(﹣4,﹣4),B6點(diǎn)坐標(biāo)為(0,﹣8),
B7(8,﹣8),B8(16,0)
B9(16,16),B10(0,32),
由規(guī)律可以發(fā)現(xiàn),每經(jīng)過8次作圖后,點(diǎn)的坐標(biāo)符號(hào)與第一次坐標(biāo)符號(hào)相同,每次正方形的邊長變?yōu)樵瓉淼? 倍,
∵2016÷8=252
∴B2016的縱橫坐標(biāo)符號(hào)與點(diǎn)B8的相同,橫坐標(biāo)為正值,縱坐標(biāo)是0,
∴B2016的坐標(biāo)為(21008 , 0).
故答案為:(21008 , 0).
首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐標(biāo),找出這些坐標(biāo)的之間的規(guī)律,然后根據(jù)規(guī)律計(jì)算出點(diǎn)B2016的坐標(biāo).本題主要考查正方形的性質(zhì)和坐標(biāo)與圖形的性質(zhì)的知識(shí)點(diǎn),解答本題的關(guān)鍵是由點(diǎn)坐標(biāo)的規(guī)律發(fā)現(xiàn)每經(jīng)過8次作圖后,點(diǎn)的坐標(biāo)符號(hào)與第一次坐標(biāo)符號(hào)相同,每次正方形的邊長變?yōu)樵瓉淼? 倍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在民族團(tuán)結(jié)宣傳活動(dòng)中,采用了四種宣傳形式:A唱歌,B舞蹈,C朗誦,D器樂.全校的每名學(xué)生都選擇了一種宣傳形式參與了活動(dòng),小明對(duì)同學(xué)們選用的宣傳形式,進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了如圖兩種不完整的統(tǒng)計(jì)圖表:
選項(xiàng) | 方式 | 百分比 |
A | 唱歌 | 35% |
B | 舞蹈 | a |
C | 朗誦 | 25% |
D | 器樂 | 30% |
請(qǐng)結(jié)合統(tǒng)計(jì)圖表,回答下列問題:
(1)本次調(diào)查的學(xué)生共△人,a=△ , 并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果該校學(xué)生有2000人,請(qǐng)你估計(jì)該校喜歡“唱歌”這種宣傳形式的學(xué)生約有多少人?
(3)學(xué)校采用調(diào)查方式讓每班在A、B、C、D四種宣傳形式中,隨機(jī)抽取兩種進(jìn)行展示,請(qǐng)用樹狀圖或列表法,求某班抽到的兩種形式恰好是“唱歌”和“舞蹈”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC= ,將△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,P,B,C是圓上的四個(gè)點(diǎn),∠APC=∠CPB=60°,AP,CB的延長線相交于點(diǎn)D.
(1)求證:△ABC是等邊三角形;
(2)若∠PAC=90°,AB=2 ,求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一張矩形紙片ABCD沿EF折疊后,點(diǎn)A落在CD邊上的點(diǎn)A′處,點(diǎn)B落在點(diǎn)B′處,若∠2=40°,則圖中∠1的度數(shù)為( 。
A.115°
B.120°
C.130°
D.140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y=﹣ x與反比例函數(shù)y= 的圖象交于關(guān)于原點(diǎn)對(duì)稱的A,B兩點(diǎn),已知A點(diǎn)的縱坐標(biāo)是3.
(1)求反比例函數(shù)的表達(dá)式;
(2)將直線y=﹣ x向上平移后與反比例函數(shù)在第二象限內(nèi)交于點(diǎn)C,如果△ABC的面積為48,求平移后的直線的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用兩種方法證明“三角形的外角和等于360°”.如圖,
∠BAE、∠CBF、∠ACD是△ABC的三個(gè)外角.
求證∠BAE+∠CBF+∠ACD=360°.
請(qǐng)把證法1補(bǔ)充完整,并用不同的方法完成證法2.
(1)證法1:∵ ,
∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°
∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).
∵ ,
∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.
(2)證法2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣ x2+bx+c的圖象與坐標(biāo)軸交于A、B、C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)B的坐標(biāo)為(﹣4,0).
(1)求該二次函數(shù)的表達(dá)式及點(diǎn)C的坐標(biāo);
(2)點(diǎn)D的坐標(biāo)為(0,4),點(diǎn)F為該二次函數(shù)在第一象限內(nèi)圖象上的動(dòng)點(diǎn),連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設(shè)平行四邊形CDEF的面積為S.
①求S的最大值;
②在點(diǎn)F的運(yùn)動(dòng)過程中,當(dāng)點(diǎn)E落在該二次函數(shù)圖象上時(shí),請(qǐng)直接寫出此時(shí)S的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+(m-1)x+m(m>1)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)點(diǎn)D和點(diǎn)C關(guān)于拋物線的對(duì)稱軸對(duì)稱,點(diǎn)F在直線AD上方的拋物線上,F(xiàn)G⊥AD于G,F(xiàn)H//x軸交直線AD于H,求△FGH的周長的最大值;
(3)點(diǎn)M是拋物線的頂點(diǎn),直線l垂直于直線AM,與坐標(biāo)軸交于P、Q兩點(diǎn),點(diǎn)R在拋物線的對(duì)稱軸上,得△PQR是以PQ為斜邊的等腰直角三角形,求直線l的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com