【題目】如圖,在梯形中,,若,,分別是梯形各邊、、的中點.

求證:四邊形平行四邊形;

當梯形滿足什么條件時,四邊形是菱形;

的條件下,梯形滿足什么條件時,四邊形是正方形.

【答案】(1)見解析;(2)見解析;(3)見解析.

【解析】

(1)連接對角線,利用三角形中位線定理,根據(jù)平行四邊形的判定方法判斷.

(2)根據(jù)菱形四邊相等可推出梯形對角線相等,即梯形是等腰梯形,AD=BC.

(3)要證明四邊形EFGH是正方形,則要證明四邊形EFGH有一個角是直角.

證明:連接、

、分別是、、、的中點,

,;

,

四邊形為平行四邊形;

解:,,

若四邊形為菱形,

,從而.得為等腰梯形,

當梯形的邊滿足時,四邊形為菱形.

解:四邊形為菱形,

根據(jù)有一個角是直角的菱形是正方形,

故梯形滿足條件時,四邊形是正方形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知等邊△ABC中,DAC的中點,EBC延長線上的一點,且CECD,DMBC,垂足為M,

1)求證:MBE的中點.

2)若CD1DE,求△ABD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,點、分別在軸和軸上,軸,.點出發(fā),以1cm/s的速度沿邊勻速運動,點從點出發(fā),沿線段勻速運動.點與點同時出發(fā),其中一點到達終點,另一點也隨之停止運動.設點運動的時間為(s),的面積為(cm2),己知之間的函數(shù)關系如圖②中的曲線段、線段與曲線段.

(1)的運動速度為 cm/s,點的坐標為 ;

(2)求曲線段的函數(shù)解析式;

(3)為何值時,的面積是四邊形的面積的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DCAB的延長線相交于點P,弦CE平分∠ACB,交ABF,連接BE

(1)求證:AC平分∠DAB;

(2)求證:PCPF

(3)tanABC,AB14,求線段PC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等邊三角形ABC,點D是邊AC上任意一點,延長BCE,使CEAD

1)如圖1,點DAC中點,求證:DBDE

2)如圖2,點D不是AC中點,求證:DBDE;

3)如圖3,點D不是AC中點,點FBD的中點,連接AE,AF,求證:AE2AF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中央電視臺的“中國詩詞大賽”節(jié)目文化品位高,內容豐富某校初二年級模擬開展“中國詩詞大賽”比賽,對全年級同學成績進行統(tǒng)計后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個等級并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計圖,請結合統(tǒng)計圖中的信息,回答下列問題

1)扇形統(tǒng)計圖中“優(yōu)秀”所對應的扇形的圓心角為 ,并將條形統(tǒng)計圖補充完整.

2)此次比賽有四名同學活動滿分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學中挑選兩名同學參加學校舉行的“中國詩詞大賽”比賽,請用列表法或畫樹狀圖法,求出選中的兩名同學恰好是甲、丁的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1、、、按如圖方式排列,若規(guī)定(m、n)表示第m排從左向右第n個數(shù),則(6,5)與(13,6)表示的兩數(shù)之積是(

A.B.6C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,ABC是等邊三角形,點PBC上一動點(點P與點B、C不重合),過點PPMACABM,PNABACN,連接BN、CM

1)求證:PM+PNBC;

2)在點P的位置變化過程中,BNCM是否成立?試證明你的結論;

3)如圖②,作NDBCABD,則圖②成軸對稱圖形,類似地,請你在圖③中添加一條或幾條線段,使圖③成軸對稱圖形(畫出一種情形即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B1cm/s的速度勻速運動到點B,圖2是點F運動時,FBC的面積y(cm2)隨時間x(s)變化的關系圖象,則a的值為( 。

A. B. 2 C. D. 2

查看答案和解析>>

同步練習冊答案