【題目】1、、、按如圖方式排列,若規(guī)定(m、n)表示第m排從左向右第n個(gè)數(shù),則(6,5)與(136)表示的兩數(shù)之積是(

A.B.6C.D.

【答案】B

【解析】

根據(jù)數(shù)的排列方法可知,第一排:1個(gè)數(shù),第二排2個(gè)數(shù).第三排3個(gè)數(shù),第四排4個(gè)數(shù),m-1排有(m-1)個(gè)數(shù),從第一排到(m-1)排共有:1+2+3+4+…+m-1)個(gè)數(shù),根據(jù)數(shù)的排列方法,每四個(gè)數(shù)一個(gè)輪回,根據(jù)題目意思找出第m排第n個(gè)數(shù)到底是哪個(gè)數(shù)后再計(jì)算.

第一排1個(gè)數(shù),第二排2個(gè)數(shù).第三排3個(gè)數(shù),第四排4個(gè)數(shù),

m-1排有(m-1)個(gè)數(shù),從第一排到(m-1)排共有:1+2+3+4+…+m-1)個(gè)數(shù),

根據(jù)數(shù)的排列方法,每四個(gè)數(shù)一個(gè)輪回,

由此可知:(6,5)表示第6排從左向右第5個(gè)數(shù)是,

13,6)表示第13排從左向右第6個(gè)數(shù),可以看出奇數(shù)排最中間的一個(gè)數(shù)都是1,

13排是奇數(shù)排,最中間的也就是這排的第7個(gè)數(shù)是1,那么第6個(gè)就是,

則(65)與(13,6)表示的兩數(shù)之積是6

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小聰在用描點(diǎn)法畫(huà)二次函數(shù)y=ax2bxc的圖象時(shí),列出下面的表格:

x

-5

-4

-3

-2

-1

y

-7.5

-2.5

0.5

1.5

0.5

根據(jù)表格提供的信息,下列說(shuō)法錯(cuò)誤的是( ).

A. 該拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x=-2

B. b2-4ac>0

C. 該拋物線(xiàn)與y軸的交點(diǎn)坐標(biāo)為(0,-3.5)

D. 若(0.5,y1)是該拋物線(xiàn)上一點(diǎn).則y1<-2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=|x2﹣x﹣2|,直線(xiàn)y=kx+4恰好與y=|x2﹣x﹣2|的圖象只有三個(gè)交點(diǎn),則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中,,若,,分別是梯形各邊、、的中點(diǎn).

求證:四邊形平行四邊形;

當(dāng)梯形滿(mǎn)足什么條件時(shí),四邊形是菱形;

的條件下,梯形滿(mǎn)足什么條件時(shí),四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,∠ABC=30°,過(guò)點(diǎn)B作⊙O的切線(xiàn)BD,與CA的延長(zhǎng)線(xiàn)交于點(diǎn)D,與半徑AO的延長(zhǎng)線(xiàn)交于點(diǎn)E,過(guò)點(diǎn)A作⊙O的切線(xiàn)AF,與直徑BC的延長(zhǎng)線(xiàn)交于點(diǎn)F.

(1)求證:△ACF∽△DAE;

(2)若S△AOC=,求DE的長(zhǎng);

(3)連接EF,求證:EF是⊙O的切線(xiàn).

【答案】(1) 見(jiàn)解析; (2)3 ;(3)見(jiàn)解析.

【解析】試題分析:(1)根據(jù)圓周角定理得到BAC=90°,根據(jù)三角形的內(nèi)角和得到ACB=60°根據(jù)切線(xiàn)的性質(zhì)得到OAF=90°,∠DBC=90°,于是得到D=∠AFC=30°由相似三角形的判定定理即可得到結(jié)論;

(2)根據(jù)SAOC=,得到SACF=,通過(guò)ACF∽△DAE,求得SDAE=,過(guò)AAHDEH,解直角三角形得到AH=DH=DE,由三角形的面積公式列方程即可得到結(jié)論;

(3)根據(jù)全等三角形的性質(zhì)得到OE=OF,根據(jù)等腰三角形的性質(zhì)得到OFG=(180°﹣∠EOF)=30°,于是得到AFO=∠GFO,過(guò)OOGEFG,根據(jù)全等三角形的性質(zhì)得到OG=OA,即可得到結(jié)論.

試題解析:(1)證明:BCO的直徑,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°

OA=OC,∴∠AOC=60°,∵AFO的切線(xiàn),∴∠OAF=90°,∴∠AFC=30°,∵DEO的切線(xiàn),∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;

(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵SAOC=,∴SACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴SDAE=,過(guò)AAHDEH,∴AH=DH=DE,∴SADE=DEAH=×=,∴DE=;

(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFOAOFBOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,過(guò)OOGEFG,∴∠OAF=∠OGF=90°,在AOFOGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EFO的切線(xiàn).

型】解答
結(jié)束】
25

【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形ABCO是矩形,點(diǎn)A,C的坐標(biāo)分別是A(0,2)和C(2,0),點(diǎn)D是對(duì)角線(xiàn)AC上一動(dòng)點(diǎn)(不與A,C重合),連結(jié)BD,作DE⊥DB,交x軸于點(diǎn)E,以線(xiàn)段DE,DB為鄰邊作矩形BDEF.

(1)填空:點(diǎn)B的坐標(biāo)為   

(2)是否存在這樣的點(diǎn)D,使得△DEC是等腰三角形?若存在,請(qǐng)求出AD的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由;

(3)①求證:

②設(shè)AD=x,矩形BDEF的面積為y,求y關(guān)于x的函數(shù)關(guān)系式(可利用①的結(jié)論),并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明從家騎自行車(chē)出發(fā),沿一條直路到相距2400m的郵局辦事,小明出發(fā)的同時(shí),他的爸爸以96m/min速度從郵局同一條道路步行回家,小明在郵局停留2min后沿原路以原速返回,設(shè)他們出發(fā)后經(jīng)過(guò)t min時(shí),小明與家之間的距離為s1m,小明爸爸與家之間的距離為s2 m,圖中折線(xiàn)OABD、線(xiàn)段EF分別表示s1、s2t之間的函數(shù)關(guān)系的圖象。

1)求s2t之間的函數(shù)關(guān)系式;

2)小明從家出發(fā),經(jīng)過(guò)多長(zhǎng)時(shí)間在返回途中追上爸爸?這時(shí)他們距離家還有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)的坐標(biāo)為.將點(diǎn)繞著原點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)得到點(diǎn),延長(zhǎng)到點(diǎn),使;再將點(diǎn)繞著原點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)得到點(diǎn),延長(zhǎng)到點(diǎn),使;…如此繼續(xù)下去.

求:(1)點(diǎn)的坐標(biāo);(2)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是拋物線(xiàn)圖象的一部分,已知拋物線(xiàn)的對(duì)稱(chēng)軸是,與軸的一個(gè)交點(diǎn)是,有下列結(jié)論:

;

;

④拋物線(xiàn)與軸的另一個(gè)交點(diǎn)是;

⑤點(diǎn)都在拋物線(xiàn)上,則有

其中正確的是( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等腰△ABC中,ADBC交直線(xiàn)BC于點(diǎn)D,若AD=BC,則△ABC的頂角的度數(shù)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案