【題目】如圖,在中,,點是邊的中點,點是邊上的一個動點,過點作射線的垂線,垂足為點,連接.設(shè),.
小石根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究.
下面是小石的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了與的幾組值,如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
3.0 | 2.4 | 1.9 | 1.8 | 2.1 | 3.4 | 4.2 | 5.0 |
(說明:補全表格時相關(guān)數(shù)據(jù)保留一位小數(shù))
(2)建立平面直角坐標(biāo)系,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:
點是邊的中點時,的長度約為 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知RT△ABC中,∠C=90°,AC=4,BC=8.動點P從點C出發(fā),以每秒2個單位的速度沿射線CB方向運動,連接AP,設(shè)運動時間為ts.
(1)求斜邊AB的長
(2)當(dāng)t為何值時,△PAB的面積為6
(3)若t<4,請在所給的圖中畫出△PAB中AP邊上的高BQ,問:當(dāng)t為何值時,BQ長為4?并求出此時點Q到邊BC的距離
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家出發(fā)到公園晨練,在公園鍛煉一段時間后按原路返回,同時小明爸爸從公園按小明的路線返回家中.如圖是兩人離家的距離(米)與小明出發(fā)的時間(分)之間的關(guān)系,則小明出發(fā)______分鐘后與爸爸相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機小李某天下午運營全是在東西走向的人民大道上進行的,如果規(guī)定向東為正,向西為負,他這天下午行駛里程如下:(單位:千米)
+15, -3, +14,-11,+10,-12,+4,-15,+16,-18
(1)他將最后一名乘客送到目的地時,距下午出車地點是多少千米?
(2)若汽車耗油量為升∕千米,這天下午共耗油多少升
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖表示一個正比例函數(shù)與一個一次函數(shù)的圖象,它們交于點A(4,3),一次函數(shù)的圖象與y軸交于點B,且OA=OB.
(1)求這兩個函數(shù)的解析式;
(2)求△OAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),動點M在線段OA和射線AC上運動.
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)是否存在點M,使△OMC的面積是△OAC的面積的?若存在求出此時點M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,F(xiàn)為CD上一點,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解題過程,并解答后面的問題:
如圖,在平面直角坐標(biāo)系中,,,C為線段AB的中點,求C的坐標(biāo).解:分別過A,C作x軸的平行線,過B,C作y軸的平行線,兩組平行線的交點如圖1.
設(shè)C的坐標(biāo)為,則D、E、F的坐標(biāo)為,,
由圖可知:,
∴C的坐標(biāo)為
問題:
(1)已知A(-1,4),B(3,-2),則線段AB的中點坐標(biāo)為______
(2)平行四邊形ABCD中,點A、B、C的坐標(biāo)分別為(1,-4),(0,2),(5,6),求D的坐標(biāo).
(3)如圖2,B(6,4)在函數(shù)的圖象上,A的坐標(biāo)為(5,2),C在x軸上,D在函數(shù)的圖象上,以A、B、C、D四個點為頂點構(gòu)成平行四邊形,直接寫出所有滿足條件的D點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖l,在四邊形ABCD中.∠DAB被對角線AC平分,且AC2=AB·AD,我們稱該四邊形為“可分四邊形”∠DAB稱為“可分角”.
(1)如圖2,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,求證:△DAC∽△CAB.
(2)如圖2,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB 則∠DAB = .
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4.BC=2.∠D=90°,則AD= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com