【題目】(2014河南18題)某興趣小組為了解本校男生參加課外體育鍛煉情況,隨機(jī)抽取本校300名男生進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)整理并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息解答下列問題:
(1)課外體育鍛煉情況扇形統(tǒng)計(jì)圖中,“經(jīng)常參加”所對(duì)應(yīng)的圓心角的度數(shù)為________;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有1200名男生,請(qǐng)估計(jì)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù);
(4)小明認(rèn)為“全校所有男生中,課外最喜歡參加的運(yùn)動(dòng)項(xiàng)目是乒乓球的人數(shù)約為”.請(qǐng)你判斷這種說法是否正確,并說明理由.
【答案】(1)144°;(2)補(bǔ)圖見解析;(3)全校1200名男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù)約有160人;(4)不正確.理由見解析
【解析】
(1)144°;
[解法提示]由扇形統(tǒng)計(jì)圖可知,“經(jīng)常參加”所占的百分比為:,故“經(jīng)常參加”所對(duì)應(yīng)的圓心角的度數(shù)為:.
(2)補(bǔ)全條形統(tǒng)計(jì)圖如解圖:
[解法提示]由(1)可知,“經(jīng)常參加”所占的百分比為40%,故“經(jīng)常參加”的頻數(shù)為:(人).由條形統(tǒng)計(jì)圖可知喜歡籃球的人數(shù)為:(人).
(3)(人),
答:全校1200名男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù)約有160人;
(4)不正確.
理由:本小題的前提條件是“全校所有男生中喜歡乒乓球運(yùn)動(dòng)的人數(shù)”,而的意義是“300名學(xué)生中經(jīng)常參加課外體育鍛煉并且最喜歡乒乓球項(xiàng)目的人數(shù)所占的頻率”,并不是全校男生中所有喜歡乒乓球項(xiàng)目的人數(shù)所占的頻率.全校1200名男生中,偶爾參加課外體育鍛煉的男生中也可能有喜歡乒乓球運(yùn)動(dòng)的,所以小明的說法不正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校積極開展“陽(yáng)光體育”活動(dòng),并開設(shè)了跳繩、足球、籃球、跑步四種運(yùn)動(dòng)項(xiàng)目,為了解學(xué)生最喜愛哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(部分信息未給出).
(1)求本次被調(diào)查的學(xué)生人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“籃球”部分所對(duì)應(yīng)的圓心角度數(shù)為__ ;
(4)該校共有3000名學(xué)生,請(qǐng)估計(jì)全校最喜愛籃球的人數(shù)比最喜愛足球的人數(shù)多多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,排球場(chǎng)長(zhǎng)為18m,寬為9m,網(wǎng)高為2.24m.隊(duì)員站在底線O點(diǎn)處發(fā)球,球從點(diǎn)O的正上方1.9m的C點(diǎn)發(fā)出,運(yùn)動(dòng)路線是拋物線的一部分,當(dāng)球運(yùn)動(dòng)到最高點(diǎn)A時(shí),高度為2.88m.即BA=2.88m.這時(shí)水平距離OB=7m,以直線OB為x軸,直線OC為y軸,建立平面直角坐標(biāo)系,如圖2.
(1)若球向正前方運(yùn)動(dòng)(即x軸垂直于底線),求球運(yùn)動(dòng)的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式(不必寫出x取值范圍).并判斷這次發(fā)球能否過網(wǎng)?是否出界?說明理由;
(2)若球過網(wǎng)后的落點(diǎn)是對(duì)方場(chǎng)地①號(hào)位內(nèi)的點(diǎn)P(如圖1,點(diǎn)P距底線1m,邊線0.5m),問發(fā)球點(diǎn)O在底線上的哪個(gè)位置?(參考數(shù)據(jù):取1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,連結(jié),點(diǎn)在射線上,以為邊在上方作,作,連結(jié).
(1)當(dāng)點(diǎn)在線段上時(shí),證明:;
(2)若時(shí),求的面積;
(3)的外接圓交射線于點(diǎn),作直線交直線于點(diǎn),交直線于點(diǎn),連接,若,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)公共點(diǎn),那么一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.”請(qǐng)根據(jù)你對(duì)這句話的理解,解決下面問題:若m、n(m<n)是關(guān)于x的方程1﹣(x﹣a)(x﹣b)=0的兩根,且a<b,則a、b、m、n的大小關(guān)系是( ).
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游樂園有一個(gè)直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達(dá)到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向?yàn)?/span>x軸,噴水池中心為原點(diǎn)建立直角坐標(biāo)系.
(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式;
(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時(shí)必須在離水池中心多少米以內(nèi)?
(3)經(jīng)檢修評(píng)估,游樂園決定對(duì)噴水設(shè)施做如下設(shè)計(jì)改進(jìn):在噴出水柱的形狀不變的前提下,把水池的直徑擴(kuò)大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請(qǐng)?zhí)骄繑U(kuò)建改造后噴水池水柱的最大高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng).DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5).
解答下列問題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最。咳舸嬖,求出y的最小值;若不存在,說明理由.
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是某小型汽車的側(cè)面示意圖,其中矩形表示該車的后備箱,在打開后備箱的過程中,箱蓋可以繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角為時(shí),箱蓋落在的位置(將后備箱放大后如圖2所示).已知厘米,厘米,厘米.在圖2中求:
(1)點(diǎn)到的距離(結(jié)果保留根號(hào));
(2)、兩點(diǎn)的距離(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線y=-x2+2x的頂點(diǎn)為A點(diǎn),且與x軸的正半軸交于點(diǎn)B,P點(diǎn)為該拋物線對(duì)稱軸上一點(diǎn),則OP+AP的最小值為( ).
A. 3 B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com