【題目】)如圖,Rt△ABC中,C= 90o,以斜邊AB為邊向外作正方形 ABDE,且正方形對(duì)角線交于點(diǎn)D,連接OC,已知AC=5,OC=6,則另一直角邊BC的長為 ▲ .
【答案】7。
【解析】
正方形的性質(zhì),全等三角形的判定和性質(zhì),矩形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),勾股定理。
∵四邊形ABDE為正方形,∴∠AOB=90°,OA=OB。
∴∠AOM+∠BOF=90°。
又∵∠AMO=90°,∴∠AOM+∠OAM=90°。∴∠BOF=∠OAM。
在△AOM和△BOF中,
∵∠AMO=∠OFB=90°,∠OAM=∠BOF, OA=OB,
∴△AOM≌△BOF(AAS)。∴AM=OF,OM=FB。
又∵∠ACB=∠AMF=∠CFM=90°,∴四邊形ACFM為矩形。∴AM=CF,AC=MF=5。
∴OF=CF。∴△OCF為等腰直角三角形。
∵OC=6,∴根據(jù)勾股定理得:CF2+OF2=OC2,即2CF2=(6)2,解得:CF=OF=6。
∴FB=OM=OF-FM=6-5=1。∴BC=CF+BF=6+1=7。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,C城市在A城市正東方向,現(xiàn)計(jì)劃在A,C兩城市間修建一條高速鐵路(即線段AC),經(jīng)測量,森林保護(hù)區(qū)的中心P在城市A的北偏東60°方向上,在線段AC上距A城市120 km的B處測得P在北偏東30°方向上,已知森林保護(hù)區(qū)是以點(diǎn)P為圓心,100 km為半徑的圓形區(qū)域,請(qǐng)問計(jì)劃修建的這條高速鐵路是否穿越保護(hù)區(qū),為什么?(參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BP平分∠ABC,D為BP上一點(diǎn),E,F分別在BA,BC上,且滿足DE=DF,若∠BED=140°,則∠BFD的度數(shù)是( 。
A. 40°B. 50°C. 60°D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)探究:哪些特殊的角可以用一副三角板畫出?
在①,②,③,④中,小明同學(xué)利用一副三角板畫不出來的特殊角是_________;(填序號(hào))
(2)在探究過程中,愛動(dòng)腦筋的小明想起了圖形的運(yùn)動(dòng)方式有多種.如圖,他先用三角板畫出了直線,然后將一副三角板拼接在一起,其中角()的頂點(diǎn)與角()的頂點(diǎn)互相重合,且邊、都在直線上.固定三角板不動(dòng),將三角板繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)一個(gè)角度,當(dāng)邊與射線第一次重合時(shí)停止.
①當(dāng)平分時(shí),求旋轉(zhuǎn)角度;
②是否存在?若存在,求旋轉(zhuǎn)角度;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年新年時(shí),小明的爸爸收到這樣一條短信,年齡與數(shù)字的秘密!如果你年齡在1~99之間,那么你隨便想一個(gè)數(shù)字,就能算出你的年齡!計(jì)算步驟如下:
①隨便想一個(gè)1~9之間的數(shù)字.
②把這個(gè)數(shù)字乘以 5.
③然后加上 40.
④再乘以 20.
⑤把所得的數(shù)加上 1219.
⑥用最后得到的數(shù)減去你出生的年份,這樣你會(huì)得到一個(gè)數(shù),它的第一個(gè)數(shù)字就是你開始想的那個(gè)數(shù),后面的數(shù)字就表示你的實(shí)際年齡(實(shí)際年齡=當(dāng)前年份-出生年份).
小明馬上想了一個(gè)數(shù)字“8”,他是2007年出生的,請(qǐng)你幫他計(jì)算一下,驗(yàn)證這條短信所說的是否正確.假設(shè)小明當(dāng)時(shí)想的數(shù)字為,請(qǐng)用所學(xué)的代數(shù)式知識(shí)列式解開這條短信的奧秘.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在初中學(xué)習(xí)中,我們知道:點(diǎn)到直線的距離是直線外一點(diǎn)和直線上各點(diǎn)連接的所有線段中,最短的線段(即垂線段)的長度.類比,我們給出點(diǎn)到某一個(gè)圖形的距離的定義:點(diǎn)P與圖形l上各點(diǎn)連接的所有線段中,若線段PA1最短,則線段PA1的長度稱為點(diǎn)P到圖形l的距離,記為d(P,圖形l).特別地,點(diǎn)P在圖形上,則點(diǎn)P到圖形的距離為0,即d(P,圖形)=0.
(1)若點(diǎn)P是⊙O內(nèi)一點(diǎn),⊙O的半徑是5,OP=2,則d(P,⊙O)= .
(2)如圖1,在平面直角坐標(biāo)系xOy中,A(4,0).若M(0,2),N(﹣1,0),則d(M,∠AOB)= ,d(N,∠AOB)= .
(3)在正方形OABC中,點(diǎn)B(4,4),如圖2,若點(diǎn)P在直線y=3x+4上,且d(P,∠AOB)=2,求點(diǎn)P的坐標(biāo);
(4)已知點(diǎn)P(m+1,2m﹣3),以點(diǎn)E(1,0)為圓心,EO長為半徑作⊙E,則d(P,⊙E)的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形中,點(diǎn)是直線上一點(diǎn).連接,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到線段,連接.
(1)如圖1.若點(diǎn)在線段的延長線上過點(diǎn)作于.與對(duì)角線交于點(diǎn).
①請(qǐng)仔細(xì)閱讀題目,根據(jù)題意在圖上補(bǔ)全圖形;②求證:.
(2)若點(diǎn)在射線上,直接寫出,,三條線段之間的數(shù)量關(guān)系(不必寫過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,點(diǎn)A、B分別在x軸正半軸、y軸正半軸上,AO=BO,△ABO的面積為2.
(1)求點(diǎn)A的坐標(biāo);
(2)點(diǎn)C、D分別在x軸負(fù)半軸、y軸正半軸上(D在B點(diǎn)上方),AD=BC,連接CD交AB延長線于E,設(shè)點(diǎn)E橫坐標(biāo)為t,△BCE的面積為S,求S與t的函數(shù)關(guān)系;
(3)在(2)的條件下,點(diǎn)F為BE中點(diǎn),連接OF交BC于G,當(dāng)∠CGO=90°時(shí),求點(diǎn)D坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了進(jìn)一步改進(jìn)本校七年級(jí)數(shù)學(xué)教學(xué),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,校教務(wù)處在七年級(jí)所有班級(jí)中,每班隨機(jī)抽取了6名學(xué)生,并對(duì)他們的數(shù)學(xué)學(xué)習(xí)情況進(jìn)行了問卷調(diào)查.我們從所調(diào)查的題目中,特別把學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)喜歡程度的回答(喜歡程度分為:“A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡”,針對(duì)這個(gè)題目,問卷時(shí)要求每位被調(diào)查的學(xué)生必須從中選一項(xiàng)且只能選一項(xiàng))結(jié)果進(jìn)行了統(tǒng)計(jì),現(xiàn)將統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)以上提供的信息,解答下列問題:
(1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)所抽取學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)喜歡程度的眾數(shù)是 ;
(3)若該校七年級(jí)共有960名學(xué)生,請(qǐng)你估算該年級(jí)學(xué)生中對(duì)數(shù)學(xué)學(xué)習(xí)“不太喜歡”的有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com