【題目】如圖,RtABC,C=90°,CA=CB=4cm,點(diǎn)PAB邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)ECA邊的中點(diǎn), 連接PE,設(shè)A,P兩點(diǎn)間的距離為xcm,PE兩點(diǎn)間的距離為y cm.小安根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.

下面是小安的探究過程,請補(bǔ)充完整:

(1)通過取點(diǎn)、畫圖、測量,得到了的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

7

8

y/cm

2.8

2.2

2.0

2.2

2.8

3.6

5.4

6.3

說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù)

(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;

(3)結(jié)合畫出的函數(shù)圖象,解決問題:

①寫出該函數(shù)的一條性質(zhì): ;

②當(dāng)時(shí),的長度約為 cm.

【答案】(1)4.5;(2)見解析;(3)1.1cm

【解析】試題分析:如圖所示:過點(diǎn)于點(diǎn) 根據(jù)勾股定理求解即可.

秒點(diǎn),連線即可.

根據(jù)圖象回答即可.

試題解析:如圖所示:過點(diǎn)于點(diǎn)

易求

故答案為:4.5.

2)如圖:

3)①該函數(shù)有最小值或最大值;或當(dāng)x2時(shí),yx的增大而增大.

②當(dāng)時(shí),的長度約為1.1cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】永輝超市銷售茶壺、茶杯,茶壺每只定價(jià)20元,茶杯每只4元.今年雙十一期間超市將開展促銷活動(dòng),向顧客提供兩種優(yōu)惠方案:

方案一:每買一只茶壺就贈(zèng)一只茶杯;

方案二:茶壺和茶杯都按定價(jià)的90%付款.

某顧客計(jì)劃到該超市購買茶壺5只和茶杯只(茶杯數(shù)多于5只).

1)用含的代數(shù)式分別表示方案一與方案二各需付款多少元?

2)當(dāng)時(shí),請通過計(jì)算說明該顧客選擇上面的兩種購買方案哪種更省錢?

3)當(dāng)時(shí),你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣2x+8的圖象與反比例函數(shù)y2=(x>0)的圖象交于A(3,n),B(m,6)兩點(diǎn).

(1)求反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)根據(jù)圖象直接寫出當(dāng)x>0時(shí),y1>y2的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,ABCAC=BC,∠A=30°,點(diǎn)DAB邊上且ADC=45°.

(1)BCD的度數(shù);

(2)將圖中的BCD繞點(diǎn)B順時(shí)針旋轉(zhuǎn),得到BCD.當(dāng)點(diǎn)D恰好落在BC邊上時(shí),如圖所示連接CC并延長交AB于點(diǎn)E

CCB的度數(shù);

求證CBD′≌CAE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:()如果兩個(gè)函數(shù) ,存在 取同一個(gè)值,使得,那么稱 互聯(lián)互通函數(shù),稱對應(yīng)的值為 互聯(lián)點(diǎn); )如果兩個(gè)函數(shù)互聯(lián)互通函數(shù),那么的最大值稱為互通值”.

1)判斷函數(shù)是否為互通互聯(lián)函數(shù),如果是,請求出時(shí)他們的互聯(lián)點(diǎn),如果不是,請說明理由;

2)當(dāng)時(shí),已知函數(shù)互聯(lián)互通函數(shù)”.且有唯一互聯(lián)點(diǎn)

①求出的取值范圍;

②若他們的互通值18 ,試求出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富學(xué)生的課外活動(dòng),某校決定購買100個(gè)籃球和aa>10)副羽毛球拍.經(jīng)調(diào)查發(fā)現(xiàn):甲、乙兩個(gè)體育用品商店以同樣的價(jià)格出售同種品牌的籃球和羽毛球拍.已知每個(gè)籃球比每副羽毛球拍貴25元,兩個(gè)籃球與三副羽毛球拍的費(fèi)用正好相等.經(jīng)洽談,甲商店的優(yōu)惠方案是:每購買十個(gè)籃球,送一副羽毛球拍;乙商店的優(yōu)惠方案是:若購買籃球數(shù)超過80個(gè),則購買羽毛球拍可打八折.

(1)設(shè)每個(gè)籃球x元,則每副羽毛球拍______元(用含x的代數(shù)表示);并求出每個(gè)籃球和每副羽毛球拍的價(jià)格分別是多少?

(2)請用含a的代數(shù)式分別表示出到甲商店和乙商店購買所花的費(fèi)用;

(3)請你決策:在哪一家商店購買劃算?(直接寫出結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠CAB=90°,ADBC于點(diǎn)D,點(diǎn)EAB的中點(diǎn),ECAD交于點(diǎn)G,點(diǎn)FBC上.

1)如圖1,若AC:AB=1:2EFCB,求證:EF=CD

2)如圖2,若AC:AB=1: EFCE,求EF: EG的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,將一個(gè)邊長為2的正方形ABCD和一個(gè)長為2,寬為1的長方形CEFD拼在一起,構(gòu)成一個(gè)大的長方形ABEF,現(xiàn)將小長方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至CE′F′D′,旋轉(zhuǎn)角為α

1)當(dāng)邊CD′恰好經(jīng)過EF的中點(diǎn)H時(shí),求旋轉(zhuǎn)角α的大;

2)如圖2GBC中點(diǎn),且α90°,求證:GD′=E′D;

3)小長方形CEFD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一周的過程中,△DCD′△BCD′能否全等?若能,直接寫出旋轉(zhuǎn)角α的大。蝗舨荒,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1y2x+1與直線l2ymx+4相交于點(diǎn)P1,b).

1)求b,m的值;

2)垂直于x軸的直線與直線l1,l2,分別交于點(diǎn)CD,垂足為點(diǎn)E,設(shè)點(diǎn)E的坐標(biāo)為(a,0)若線段CD長為2,求a的值.

查看答案和解析>>

同步練習(xí)冊答案