【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長(zhǎng)線上,連接EA,EC.
(1)如圖1,若點(diǎn)P在線段AB的延長(zhǎng)線上,求證:EA=EC;
(2)如圖2,若點(diǎn)P在線段AB的中點(diǎn),連接AC,判斷△ACE的形狀,并說(shuō)明理由;
(3)如圖3,若點(diǎn)P在線段AB上,連接AC,當(dāng)EP平分∠AEC時(shí),設(shè)AB=a,BP=b,求a:b及∠AEC的度數(shù).
【答案】(1)證明見(jiàn)解析;(2)△ACE是直角三角形;(3):1,45°.
【解析】
試題分析:(1)由正方形的性質(zhì)證明△APE≌△CFE,可得結(jié)論;
(2)分別證明∠PAE=45°和∠BAC=45°,則∠CAE=90°,即△ACE是直角三角形;
(3)分別計(jì)算PG和BG的長(zhǎng),利用平行線分線段成比例定理列比例式得:,即,解得:a=b,得出a與b的比,再計(jì)算GH和BG的長(zhǎng),由角平分線的逆定理得:∠HCG=∠BCG,由平行線的內(nèi)錯(cuò)角得:∠AEC=∠ACB=45°.
試題解析:(1)∵四邊形ABCD和四邊形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,∵AP=CF,∠P=∠F,PE=EF,∴△APE≌△CFE,∴EA=EC;
(2)△ACE是直角三角形,理由是:
如圖2,∵P為AB的中點(diǎn),∴PA=PB,∵PB=PE,∴PA=PE,∴∠PAE=45°,又∵∠BAC=45°,∴∠CAE=90°,即△ACE是直角三角形;
(3)設(shè)CE交AB于G,∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a,∵PE∥CF,∴,即,解得:a=b,∴a:b=:1,作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=(2b﹣2b)=(2﹣)b,又∵BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】郵遞員騎車(chē)從郵局出發(fā),先向南騎行2 km,到達(dá)A村,繼續(xù)向南騎行3 km到達(dá)B村,然后向北騎行9 km到達(dá)C村,最后回到郵局.
(1)以郵局為原點(diǎn),以向北為正方向,用0.5 cm表示1 km,畫(huà)出數(shù)軸,并在該數(shù)軸上表示出A,B,C三個(gè)村莊的位置.
(2)C村離A村有多遠(yuǎn)?
(3)郵遞員一共騎了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分10分)在一次蠟燭燃燒試驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度 (厘米)與燃燒時(shí)間 (小時(shí))之間的關(guān)系如圖所示,其中乙蠟燭燃燒時(shí)與之間的函數(shù)關(guān)系式是.
(1)甲蠟燭燃燒前的高度是_________厘米,乙蠟燭燃燒的時(shí)間是________小時(shí).
(2)求甲蠟燭燃燒時(shí)與之間的函數(shù)關(guān)系式.
(3)求出圖中交點(diǎn)的坐標(biāo),并說(shuō)明點(diǎn)的實(shí)際意義.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).
(1)請(qǐng)?jiān)趫D中,畫(huà)出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來(lái)的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫(huà)出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為4,點(diǎn)是對(duì)角線的中點(diǎn),點(diǎn)、分別在、邊上運(yùn)動(dòng),且保持,連接,,.在此運(yùn)動(dòng)過(guò)程中,下列結(jié)論:①;②;③四邊形的面積保持不變;④當(dāng)時(shí),,其中正確的結(jié)論是( )
A.①②B.②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE∥BF,∠1與∠2互補(bǔ).
(1)試說(shuō)明:FG∥AB;
(2)若∠CFG=60°,∠2=150°,則DE與AC垂直嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】線段AB和線段CD交于點(diǎn)O,OE平分∠AOC,點(diǎn)F為線段AB上一點(diǎn)(不與點(diǎn)A和點(diǎn)O重合)過(guò)點(diǎn)F作 FG//OE,交線段CD于點(diǎn)G,若∠AOD=110°,則∠AFG的度數(shù)為_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在東西向的馬路上有一個(gè)巡崗?fù)?/span>,巡崗員從崗?fù)?/span>出發(fā)以速度勻速來(lái)回巡邏,如果規(guī)定向東巡邏為正,向西巡邏為負(fù),巡邏情況記錄如下:(單位:千米)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
(1)第幾次結(jié)束時(shí)巡邏員甲距離崗?fù)?/span>最遠(yuǎn)?距離有多遠(yuǎn)?
(2)甲巡邏過(guò)程中配置無(wú)線對(duì)講機(jī),并一直與留守在崗?fù)?/span>的乙進(jìn)行通話,問(wèn)甲巡邏過(guò)程中,甲與乙保持通話的時(shí)長(zhǎng)共多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】感知:解不等式 .根據(jù)兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),得不等式組 或不等式組 解不等式組 ,得 ;解不等式組 ,得 ,所以原不等式的解集為 或.
(1)探究:解不等式 .
(2)應(yīng)用:不等式 的解集是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com