【題目】如圖,在矩形中,連接點(diǎn)為上一點(diǎn),使得連接交于點(diǎn),作交的延長(zhǎng)線(xiàn)于點(diǎn).
(1)求證:.
(2)若求的長(zhǎng).
(3)在(2)的條件下,將沿著對(duì)折得到點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),連接試求的周長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2);(3)的周長(zhǎng)
【解析】
(1)由矩形的性質(zhì)得∠BCD=∠FBD,結(jié)合∠BCD=∠FBD,可得,進(jìn)而即可得到結(jié)論;
(2)先證,再證BE=DE=EF,結(jié)合,求出BD的長(zhǎng),從而的BC,EC的長(zhǎng),由,得,即可求解;
(3)由折疊的性質(zhì)得QE=1,從而得AE=QE,再證,進(jìn)而即可求解.
(1)∵在矩形中,
∴∠BCD=90°,
∵,
∴∠BCD=∠FBD,
又∵,
,
,
;
(2),
,
又∵,
,
.
又,
.
,
,
由(1)可知:,
,
,
,
,
,
,即,
解得:;
(3)沿對(duì)折得到,,
點(diǎn)在上,且,
∴DQ=DC=3,
∵DE=BE=2,
,
,
.
∵BE=DE,
∴∠EBD=∠EDB,
又,
∴=∠EBD=∠EDB,
,
的周長(zhǎng):的周長(zhǎng),
的周長(zhǎng),
的周長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn)如圖1,在和中,,,,連接交于點(diǎn).填空:①的值為______;②的度數(shù)為______.
(2)類(lèi)比探究如圖2,在和中,,,連接交的延長(zhǎng)線(xiàn)于點(diǎn).請(qǐng)判斷的值及的度數(shù),并說(shuō)明理由;
(3)拓展延伸在(2)的條件下,將繞點(diǎn)在平面內(nèi)旋轉(zhuǎn),所在直線(xiàn)交于點(diǎn),若,,請(qǐng)直接寫(xiě)出當(dāng)點(diǎn)與點(diǎn)在同一條直線(xiàn)上時(shí)的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D、F分別是BC、AC邊的中點(diǎn),連接DA、DF,且AD=2DF,過(guò)點(diǎn)B作AD的平行線(xiàn)交FD的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:四邊形ABED為菱形;
(2)若BD=6,∠E=60°,求四邊形ABEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,李林和王聰兩人在玩轉(zhuǎn)盤(pán)游戲時(shí),分別把轉(zhuǎn)盤(pán),分成3等份和4等份,并標(biāo)上數(shù)字(如圖所示).游戲規(guī)則:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán),當(dāng)兩轉(zhuǎn)盤(pán)停止后,若指針?biāo)竷蓚(gè)數(shù)字之和小于4,則李林獲勝;若數(shù)字之和大于4,則王聰獲勝,如果指針落在分割線(xiàn)上,則需要重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán).
(1)用列表法或畫(huà)樹(shù)狀圖法中的一種方法,求所有可能出現(xiàn)的結(jié)果.
(2)該游戲規(guī)則對(duì)雙方公平嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】取一張矩形紙片進(jìn)行折疊,具體操作過(guò)程如下:第一步:先把矩形ABCD對(duì)折,折痕為MN,如圖1;第二步:再把B點(diǎn)疊在折痕線(xiàn)MN上,折痕為AE,點(diǎn)B在MN上的對(duì)應(yīng)點(diǎn)為B',得Rt△AB'E,如圖2;第三步:沿EB'線(xiàn)折疊得折痕EF,使A點(diǎn)落在EC的延長(zhǎng)線(xiàn)上,如圖3.
利用展開(kāi)圖4探究:
(1)△AEF是什么三角形?證明你的結(jié)論;
(2)對(duì)于任一矩形,按照上述方法是否都能折出這種三角形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校調(diào)查了若干名家長(zhǎng)對(duì)“初中生帶手機(jī)上學(xué)”現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的條形與扇形統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,完成以下問(wèn)題:
(1)本次共調(diào)查了 名家長(zhǎng);扇形統(tǒng)計(jì)圖中“很贊同”所對(duì)應(yīng)的圓心角是 度.已知該校共有1600名家長(zhǎng),則“不贊同”的家長(zhǎng)約有 名;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)從“不贊同”的五位家長(zhǎng)中(兩女三男),隨機(jī)選取兩位家長(zhǎng)對(duì)全校家長(zhǎng)進(jìn)行“學(xué)生使用手機(jī)危害性”的專(zhuān)題講座,請(qǐng)用樹(shù)狀圖或列表法求出選中“1男1女”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E、F為邊BC上兩點(diǎn),BF=CE,AE=DF.
(1)求證:△ABE≌△DCF;(2)求證:四邊形ABCD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了綠化環(huán)境,某中學(xué)八年級(jí)(3班)同學(xué)都積極參加了植樹(shù)活動(dòng),下面是今年3月份該班同學(xué)植樹(shù)情況的扇形統(tǒng)計(jì)圖和不完整的條形統(tǒng)計(jì)圖:
請(qǐng)根據(jù)以上統(tǒng)計(jì)圖中的信息解答下列問(wèn)題.
(1)植樹(shù)3株的人數(shù)為 ;
(2)扇形統(tǒng)計(jì)圖中植樹(shù)為1株的扇形圓心角的度數(shù)為 ;
(3)該班同學(xué)植樹(shù)株數(shù)的中位數(shù)是
(4)小明以下方法計(jì)算出該班同學(xué)平均植樹(shù)的株數(shù)是:(1+2+3+4+5)÷5=3(株),根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí)
判斷小明的計(jì)算是否正確,若不正確,請(qǐng)寫(xiě)出正確的算式,并計(jì)算出結(jié)果
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓柱形玻璃杯高為,底面周長(zhǎng)為,在杯內(nèi)壁離杯底的點(diǎn)處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁上,它在離杯上沿且與蜂蜜相對(duì)的處,則螞蟻從外壁處走到內(nèi)壁處,至少爬多少厘米才能吃到蜂蜜( )
A.24B.25C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com