【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D的中點(diǎn),作DEAC,交AB的延長(zhǎng)線于點(diǎn)F,連接DA

(1)求證:EF為半圓O的切線;

(2)若DADF=6,求陰影區(qū)域的面積.(結(jié)果保留根號(hào)和π)

【答案】(1)證明見解析 (2)﹣6π

【解析】

1)直接利用切線的判定方法結(jié)合圓心角定理分析得出ODEF,即可得出答案;

2)直接利用得出SACDSCOD,再利用S陰影SAEDS扇形COD,求出答案.

1)證明:連接OD

D為弧BC的中點(diǎn),

∴∠CADBAD,

OAOD,

∴∠BADADO,

∴∠CADADO,

DEAC,

∴∠E90°

∴∠CAD+∠EDA90°,即ADO+∠EDA90°,

ODEF

EF為半圓O的切線;

2)解:連接OCCD,

DADF,

∴∠BADF

∴∠BADFCAD,

∵∠BAD+∠CAD+∠F90°,

∴∠F30°,BAC60°,

OCOA,

∴△AOC為等邊三角形,

∴∠AOC60°,COB120°,

ODEF,F30°,

∴∠DOF60°

Rt△ODF中,DF6

ODDFtan30°6,

Rt△AED中,DA6CAD30°,

DEDAsin30°3EADAcos30°9,

∵∠COD180°AOCDOF60°,

CODO

∴△COD是等邊三角形,

∴∠OCD60°

∴∠DCOAOC60°,

CDAB,

SACDSCOD,

S陰影SAEDS扇形COD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF△ABC重合在一起,△ABC不動(dòng),△DEF運(yùn)動(dòng),并滿足:點(diǎn)E在邊BC上沿BC的方向運(yùn)動(dòng),且DE始終經(jīng)過點(diǎn)AEFAC交于M點(diǎn).

1)求證:△ABE∽△ECM;

2)探究:在△DEF運(yùn)動(dòng)過程中,重疊部分能否構(gòu)成等腰三角形,若能,求出BE的長(zhǎng);若不能,請(qǐng)說明理由;

3)求當(dāng)線段AM最短時(shí)的長(zhǎng)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一扇門ABCD,寬度AB1m,A到墻角E的距離AE0.5m,設(shè)EA,B在一條直線上,門打開后被與門所在墻面垂直的墻阻擋(EAEB′),邊BC靠在墻B'C'的位置.

1)求∠BAB'的度數(shù);

2)打開門后,門角上的點(diǎn)B在地面掃過的痕跡為弧BB',設(shè)弧BB'與兩墻角線圍成區(qū)域(如圖2)的面積為Sm2),求S的值(π≈3.14≈1.73,精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,E是邊AD上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)AD不重合),連接EO并延長(zhǎng),交BC于點(diǎn)F,連接BEDF.下列說法:

對(duì)于任意的點(diǎn)E,四邊形BEDF都是平行四邊形;

當(dāng)∠ABC>90°時(shí),至少存在一個(gè)點(diǎn)E,使得四邊形BEDF是矩形;

當(dāng)AB<AD時(shí),至少存在一個(gè)點(diǎn)E,使得是四邊形BEDF是菱形;

當(dāng)∠ADB=45°時(shí),至少存在一個(gè)點(diǎn)E,使得是四邊形BEDF是正方形.

所有正確說法的序號(hào)是:_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個(gè)單位后得到A1B1C1,請(qǐng)畫出A1B1C1

(2)將ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到A2B2C2,請(qǐng)畫出A2B2C2

(3)判斷以O,A1,B為頂點(diǎn)的三角形的形狀.(無須說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方形臺(tái)球桌面ABCD上有兩個(gè)球PQPQAB,球P連續(xù)撞擊臺(tái)球桌邊AB,BC反射后,撞到球Q.已知點(diǎn)M,N是球在AB,BC邊的撞擊點(diǎn),PQ=4,∠MPQ=30,且點(diǎn)PAB邊的距離為3,則四邊形PMNQ的周長(zhǎng)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)Cy軸正半軸上的一個(gè)動(dòng)點(diǎn),拋物線yax26ax+5aa是常數(shù),且a0)過點(diǎn)C,與x軸交于點(diǎn)A、B,點(diǎn)A在點(diǎn)B的左邊.連接AC,以AC為邊作等邊三角形ACD,點(diǎn)D與點(diǎn)O在直線AC兩側(cè),連接BD,則BD的最小值是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子中裝有個(gè)小球,它們除了顏色不同外,其余都相同, 其中有 5 個(gè)白球,每次試驗(yàn)前,將盒子中的小球搖勻,隨機(jī)摸出一個(gè)球記下顏色后再放回盒中.下表是摸球試驗(yàn)的一組統(tǒng)計(jì)數(shù)據(jù):

摸球次數(shù)( n

50

100

150

200

250

300

500

摸到白球次( m

28

60

78

104

123

152

251

白球頻率(

0.56

0.60

0.52

0.52

0.49

0.51

0.50

由上表可以推算出a大約是(

A.10B.14C.16D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解學(xué)生參加體育活動(dòng)的情況,學(xué)校對(duì)學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,其中一個(gè)問題是你平均每天參加體育活動(dòng)的時(shí)間是多少,共有4個(gè)選項(xiàng):A1.5小時(shí)以上;B11.5小時(shí);C0.51小時(shí);D0.5小時(shí)以下.圖1、2是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答以下問題:

1)本次一共調(diào)查了多少名學(xué)生?

2)在圖1中將選項(xiàng)B的部分補(bǔ)充完整;

3)若該校有3000名學(xué)生,你估計(jì)全?赡苡卸嗌倜麑W(xué)生平均每天參加體育活動(dòng)的時(shí)間在1小時(shí)以下.

查看答案和解析>>

同步練習(xí)冊(cè)答案