【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動(dòng),△DEF運(yùn)動(dòng),并滿(mǎn)足:點(diǎn)E在邊BC上沿B到C的方向運(yùn)動(dòng),且DE始終經(jīng)過(guò)點(diǎn)A,EF與AC交于M點(diǎn).
(1)求證:△ABE∽△ECM;
(2)探究:在△DEF運(yùn)動(dòng)過(guò)程中,重疊部分能否構(gòu)成等腰三角形,若能,求出BE的長(zhǎng);若不能,請(qǐng)說(shuō)明理由;
(3)求當(dāng)線(xiàn)段AM最短時(shí)的長(zhǎng)度
【答案】(1)證明見(jiàn)解析;(2)BE=1或;(3).
【解析】
試題(1)由AB=AC,根據(jù)等邊對(duì)等角,可得∠B=∠C,又由△ABC≌△DEF與三角形外角的性質(zhì),易證得∠CEM=∠BAE,則可證得:△ABE∽△ECM;
(2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AE≠AM,然后分別從AE=EM與AM=EM去分析,注意利用全等三角形與相似三角形的性質(zhì)求解即可求得答案;
(3)先設(shè)BE=x,由△ABE∽△ECM,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,易得CM=-(x-3)2+,利 用二次函數(shù)的性質(zhì),繼而求得線(xiàn)段AM的最小值.
試題解析:(1)證明:∵AB=AC,
∴∠B=∠C,
∵△ABC≌△DEF,
∴∠AEF=∠B,
又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,
∴∠CEM=∠BAE,
∴△ABE∽△ECM;
(2)解:∵∠AEF=∠B=∠C,且∠AME>∠C,
∴∠AME>∠AEF,
∴AE≠AM;
當(dāng)AE=EM時(shí),則△ABE≌△ECM,
∴CE=AB=5,
∴BE=BC-EC=6-5=1,
當(dāng)AM=EM時(shí),則∠MAE=∠MEA,
∴∠MAE+∠BAE=∠MEA+∠CEM,
即∠CAB=∠CEA,
又∵∠C=∠C,
∴△CAE∽△CBA,
∴
∴CE=
∴BE=6-
∴BE=1或
(3)解:設(shè)BE=x,
又∵△ABE∽△ECM,
∴
即:
∴CM=
∴AM=-5-CM=
∴當(dāng)x=3時(shí),AM最短為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,的頂點(diǎn)、在第二象限,點(diǎn),反比例函數(shù)圖象經(jīng)過(guò)點(diǎn)和邊的中點(diǎn),若,則的值為__________.(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線(xiàn)y=﹣x2+mx+n交x軸于點(diǎn)A(﹣2,0)和點(diǎn)B,交y軸于點(diǎn)C(0,2).
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)若點(diǎn)M在拋物線(xiàn)上,且S△AOM=2S△BOC,求點(diǎn)M的坐標(biāo);
(3)如圖2,設(shè)點(diǎn)N是線(xiàn)段AC上的一動(dòng)點(diǎn),作DN⊥x軸,交拋物線(xiàn)于點(diǎn)D,求線(xiàn)段DN長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°到正方形AB’C’D’,圖中陰影部分的面積為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙P的半徑為4,圓心P在拋物線(xiàn)y=x2﹣2x﹣3上運(yùn)動(dòng),當(dāng)⊙P與x軸相切時(shí),則圓心P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形中,,,以為坐標(biāo)原點(diǎn),以所在的直線(xiàn)為軸建立平面直角坐標(biāo)系,如圖.按以下步驟作圖:①分別以點(diǎn),為圓心,以大于的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn),;②作直線(xiàn)交于點(diǎn).則點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,,.
問(wèn)題情境1:(1)與的數(shù)量關(guān)系為_______;
問(wèn)題情境2:(2)如圖2,若,且,則與的數(shù)量關(guān)系是什么.請(qǐng)說(shuō)明理由;
拓展延伸:(3)將圖2中的繞點(diǎn)順時(shí)針旋轉(zhuǎn)角度(),在旋轉(zhuǎn)過(guò)程中,當(dāng),,三點(diǎn)在同一條直線(xiàn)上時(shí),請(qǐng)直接寫(xiě)出,,之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)某商場(chǎng)統(tǒng)計(jì)了今年1~5月A,B兩種品牌冰箱的銷(xiāo)售情況,并將獲得的數(shù)據(jù)繪制成折線(xiàn)統(tǒng)計(jì)圖.
(1)分別求該商場(chǎng)這段時(shí)間內(nèi)A,B兩種品牌冰箱月銷(xiāo)售量的中位數(shù)和方差;
(2)根據(jù)計(jì)算結(jié)果,比較該商場(chǎng)1~5月這兩種品牌冰箱月銷(xiāo)售量的穩(wěn)定性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點(diǎn),作DE⊥AC,交AB的延長(zhǎng)線(xiàn)于點(diǎn)F,連接DA.
(1)求證:EF為半圓O的切線(xiàn);
(2)若DA=DF=6,求陰影區(qū)域的面積.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com