如圖,拋物線與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn).
(1)求△AOB的外接圓的面積;
(2)若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位沿射線AC方向運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),以每秒0.5個(gè)單位沿射線BA方向運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)C處時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).問(wèn)當(dāng)t為何值時(shí),以A、P、Q為頂點(diǎn)的三角形與△OAB相似?
(3)若M為線段AB上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作MN平行于y軸交拋物線于點(diǎn)N.
問(wèn):是否存在這樣的點(diǎn)M,使得四邊形OMNB恰為平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)25π;(2)t=以A、P、Q為頂點(diǎn)的三角形與△OAB相似;(3)不存在這樣的點(diǎn)M,使得四邊形OMNB恰為平行四邊形,理由見(jiàn)解析.
【解析】
試題分析:(1)先求出A,B坐標(biāo),則△AOB的外接圓的半徑為AB,根據(jù)圓的面積公式求解即可;
(2)根據(jù)相似三角形對(duì)應(yīng)邊的比相等列出比例式,求解即可;
(3)若四邊形OMNB為平行四邊形,根據(jù)平行四邊形的性質(zhì)得出MN=OB=8,據(jù)此列出方程(x-8)-(x2-x-8)=8,由判別式△<0即可判斷出不存在這樣的點(diǎn)M,使得四邊形OMNB恰為平行四邊形.
試題解析:(1)∵,
∴當(dāng)y=0時(shí),=0,解得x=6或﹣8,
∴A(6,0),B(0,-8)
∴OA=6,OB=8,∴AB=10
∴S=π·(5)2=25π.
(2)AP=t,AQ=10-0.5t,易求AC=8,∴0≤t≤8
若△APQ∽△AOB,則.∴t=.
若△AQP∽△AOB,則.∴t=>8(舍去,).
∴當(dāng)t=時(shí),以A、P、Q為頂點(diǎn)的三角形與△OAB相似.
(3)直線AB的函數(shù)關(guān)系式為 .
∵M(jìn)N∥y軸
∴設(shè)點(diǎn)M的橫坐標(biāo)為x,則M(x,x-8),N(x,x2-x-8).
若四邊形OMNB為平行四邊形,則MN=OB=8
∴(x-8)-(x2-x-8)=8
即x2-6x+12=0
∵△<0,∴此方程無(wú)實(shí)數(shù)根,
∴不存在這樣的點(diǎn)M,使得四邊形OMNB恰為平行四邊形.
考點(diǎn):二次函數(shù)綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
綜合與探究:如圖,拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè))與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對(duì)稱(chēng)中心作菱形BDEC,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q
(1)求點(diǎn)A,B,C的坐標(biāo)。
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線l分別交BD,BC于點(diǎn)M,N。試探究m為何值時(shí),四邊形CQMD是平行四邊形,此時(shí),請(qǐng)判斷四邊形CQBM的形狀,并說(shuō)明理由。
(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動(dòng)時(shí),是否存在點(diǎn) Q,使△BDQ為直角三角形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(四川廣安卷)數(shù)學(xué) 題型:解答題
如圖拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0.).且對(duì)稱(chēng)抽x=l.
(1)求出拋物線的解析式及A、B兩點(diǎn)的坐標(biāo);
(2)在x軸下方的拋物線上是否存在點(diǎn)D,使四邊形ABDC的面積為3.若存在,求出點(diǎn)D的坐標(biāo);若不存在.說(shuō)明理由(使用圖1);
(3)點(diǎn)Q在y軸上,點(diǎn)P在拋物線上,要使Q、P、A、B為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)求出所有滿(mǎn)足條件的點(diǎn)P的坐標(biāo)(使用圖2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.
(1)分別求出點(diǎn)A、B、C的坐標(biāo);
(2)設(shè)拋物線的頂點(diǎn)為M,求四邊形ABMC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(山西卷)數(shù)學(xué)(解析版) 題型:解答題
綜合與探究:如圖,拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè))與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對(duì)稱(chēng)中心作菱形BDEC,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q。
(1)求點(diǎn)A,B,C的坐標(biāo)。
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線l分別交BD,BC于點(diǎn)M,N。試探究m為何值時(shí),四邊形CQMD是平行四邊形,此時(shí),請(qǐng)判斷四邊形CQBM的形狀,并說(shuō)明理由。
(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動(dòng)時(shí),是否存在點(diǎn) Q,使△BDQ為直角三角形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com