【題目】如圖,已知∠AOB=30°,P是∠AOB平分線上一點(diǎn),CP∥OB,交OA于點(diǎn)C,PD⊥OB,垂足為點(diǎn)D,且PC=8,則PD的長為_____.
【答案】4
【解析】
過點(diǎn)P作PE⊥OA于點(diǎn)E,根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得PE=PD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠POD=∠OPC,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠PCE=∠AOB,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半得出PE=PC=4,根據(jù)角平分線的性質(zhì)得到答案.
解:作PE⊥OA于E,
∵P是∠AOB平分線上一點(diǎn),
∴∠AOP=∠BOP=15°,
∵PC∥OB,
∴∠POD=∠OPC,
∴∠PCE=∠POC+∠OPC=∠POC+∠POD=∠AOB=30°,
∴PE=PC=4,
∵P是∠AOB平分線上一點(diǎn),PD⊥OB,PE⊥OA,
∴PD=PE=4,
故答案為:4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費(fèi)2000元,購買乙種足球共花費(fèi)1400元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元;
(1)求購買一個甲種足球、一個乙種足球各需多少元;
(2)2018年這所學(xué)校決定再次購買甲、乙兩種足球共50個.恰逢該商場對兩種足球的售價進(jìn)行調(diào)整,甲種足球售價比第一次購買時提高了10%,乙種足球售價比第一次購買時降低了10%.如果此次購買甲、乙兩種足球的總費(fèi)用不超過2910元,那么這所學(xué)校最多可購買多少個乙種足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在y軸上,邊AC與x軸交于點(diǎn)D,經(jīng)過A,D兩點(diǎn)的圓的圓心F恰好在y軸上,⊙F與邊BC相切于點(diǎn)E,與x軸交于點(diǎn)M,與y軸相交于另一點(diǎn)G,連接AE.
(1)求證:AE平分∠BAC;
(2)若點(diǎn)A,D的坐標(biāo)分別為(0,﹣1),(2,0),求⊙F的半徑;
(3)求經(jīng)過三點(diǎn)M,F,D的拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)商經(jīng)銷一種暢銷玩具,每件進(jìn)價為18元,每月銷量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系如圖中線段AB所示
(Ⅰ)寫出毎月銷量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式(含x的取值范圍) ;
(Ⅱ)當(dāng)銷售單價為多少元時,該網(wǎng)商毎月經(jīng)銷這種玩具能夠獲得最大銷售利潤?最大銷售利潤是多少?(銷售利潤=售價﹣進(jìn)價)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s在一條筆直公路BD的上方A處有一探測儀,如平面幾何圖,AD=24m,∠D=90°,第一次探測到一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測得∠ABD=31°,2秒后到達(dá)C點(diǎn),測得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m).
(1)求B,C的距離.
(2)通過計算,判斷此轎車是否超速.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南海是我國的南大門,如圖所示,某天我國一艘海監(jiān)執(zhí)法船在南海海域正在進(jìn)行常態(tài)化巡航,在A處測得北偏東30°方向上,距離為20海里的B處有一艘不明身份的船只正在向東南方向航行,便迅速沿北偏東75°的方向前往監(jiān)視巡查,經(jīng)過一段時間后在C處成功攔截不明船只,問我國海監(jiān)執(zhí)法船在前往監(jiān)視巡查的過程中行駛了多少海里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx經(jīng)過點(diǎn)A(﹣3,﹣3)和點(diǎn)P(m,0),且m≠0.
(1)如圖,若該拋物線的對稱軸經(jīng)過點(diǎn)A,求此時y的最小值和m的值.
(2)若m=﹣2時,設(shè)此時拋物線的頂點(diǎn)為B,求四邊形OAPB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=90°,對角線AC平分∠BAD,AC2=ABAD.
(1)求證:AC⊥CD;
(2)若點(diǎn)E是AD的中點(diǎn),連接CE,∠AEC=134°,求∠BCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△DEF均為等腰直角三角形,AB=2,DE=1,E、B、F、C在同一條直線上,開始時點(diǎn)B與點(diǎn)F重合,讓△DEF沿直線BC向右移動,最后點(diǎn)C與點(diǎn)E重合,設(shè)兩三角形重合面積為y,點(diǎn)F移動的距離為x,則y關(guān)于x的大致圖象是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com