【題目】在平面直角坐標(biāo)系中,已知,.

(1)如圖1,若,于點(diǎn),軸交于點(diǎn),則_____.

(2)如圖2,若,的平分線(xiàn)于點(diǎn),過(guò)上一點(diǎn)作,交于點(diǎn),的高,探究的數(shù)量關(guān)系;

(3)如圖3,在(1)的條件下,上點(diǎn)滿(mǎn)足,直線(xiàn)軸于點(diǎn),求點(diǎn)的坐標(biāo).

【答案】(1);(2);(3).

【解析】

1)先證明△ABC是等邊三角形,然后得到點(diǎn)MAB的中點(diǎn),則點(diǎn)NAO的中點(diǎn),即可得到A點(diǎn)坐標(biāo),求出m的值;

2)先求出m=n,得到△AOB是等腰直角三角形,然后得到△ABC也是等腰直角三角,則∠ACB=45°,從而得到∠AEG=22.5°,延長(zhǎng),使,連,證明△AEH和△AER是等腰三角形,則得到AR=ER,AH=2AG,然后根據(jù)全等得到AH=EF,即可得到;

3)先證明MQ是∠AMC的角平分線(xiàn),作,,證明,則得到,則,然后得到OQ=OA,由(1)的結(jié)論,即可求出Q點(diǎn)坐標(biāo).

解:(1),,

AO=CO=m,

AB=BC=AC,

∴△ABC是等邊三角形,

∴點(diǎn)MAB的中點(diǎn),

軸,

∴點(diǎn)NAO的中點(diǎn),

∵點(diǎn)N

∴點(diǎn)A為:,

;

故答案為:4.

(2)

證明:∵,

,

,

∵點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng)

平分

延長(zhǎng),使,連

的高.

,

中,

()

(3),

由面積法及,

可得

平分

連接,則

中,

()

(1)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABD△ACE中,有下列四個(gè)等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三個(gè)條件為題設(shè),填入已知欄中,一個(gè)論斷為結(jié)論,填入下面求證欄中,使之組成一個(gè)真命題,并寫(xiě)出證明過(guò)程.

已知:

求證:

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線(xiàn)相交于點(diǎn)F,過(guò)點(diǎn)FDEBC,交AB于點(diǎn)D,交AC于點(diǎn)E,若BD3.5,DE6,則線(xiàn)段EC的長(zhǎng)為( 。

A. 3B. 4C. 2D. 2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC,ACB=90°,A=30°,BC=1.將三角板中30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊ACBC相交于點(diǎn)E,F,且使DE始終與AB垂直.

(1)BDF是什么三角形?請(qǐng)說(shuō)明理由;

(2)設(shè)AD=x,CF=y,試求yx之間的函數(shù)關(guān)系式;(不用寫(xiě)出自變量x的取值范圍)

(3)當(dāng)移動(dòng)點(diǎn)D使EFAB時(shí),求AD的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD與正方形CEFG,M是AF的中點(diǎn),連接DM,EM.

(1)如圖1,點(diǎn)E在CD上,點(diǎn)G在BC的延長(zhǎng)線(xiàn)上,請(qǐng)判斷DM,EM的數(shù)量關(guān)系與位置關(guān)系,并直接寫(xiě)出結(jié)論;

(2)如圖2,點(diǎn)E在DC的延長(zhǎng)線(xiàn)上,點(diǎn)G在BC上,(1)中結(jié)論是否仍然成立?請(qǐng)證明你的結(jié)論;

(3)將圖1中的正方形CEFG繞點(diǎn)C旋轉(zhuǎn),使D,E,F(xiàn)三點(diǎn)在一條直線(xiàn)上,若AB=13,CE=5,請(qǐng)畫(huà)出圖形,并直接寫(xiě)出MF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機(jī)傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機(jī)傳給其他三人中的某一人.求第二次傳球后球回到甲手里的概率.(請(qǐng)用“畫(huà)樹(shù)狀圖”的方式給出分析過(guò)程)

(2)如果甲跟另外n(n≥2)個(gè)人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是 (請(qǐng)直接寫(xiě)出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小歡和小麗都十分喜歡唱歌.她們兩人一起參加學(xué)校的文藝匯演.在匯演前,主持人讓她們自己確定出場(chǎng)順序,可她們倆爭(zhēng)著先出場(chǎng),最后主持人想出了一個(gè)主意,說(shuō):給你們五張卡片,每張卡片上都有一些數(shù).將化簡(jiǎn)后的數(shù)在數(shù)軸上表示出來(lái),再用連接起來(lái),(連接化簡(jiǎn)后的數(shù))誰(shuí)先按照要求做對(duì),誰(shuí)先出場(chǎng)請(qǐng)你幫助她們解決這個(gè)問(wèn)題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)、分別為數(shù)軸上的兩點(diǎn),點(diǎn)對(duì)應(yīng)的數(shù)是,點(diǎn)對(duì)應(yīng)的數(shù)是.現(xiàn)在有一動(dòng)點(diǎn)點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),同時(shí)另一動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng).

1)與兩點(diǎn)相等的點(diǎn)所對(duì)應(yīng)的數(shù)是_________

2)兩動(dòng)點(diǎn)相遇時(shí)所用時(shí)間為________秒;此時(shí)兩動(dòng)點(diǎn)所對(duì)應(yīng)的數(shù)是_________

3)動(dòng)點(diǎn)所對(duì)應(yīng)的數(shù)是時(shí),此時(shí)動(dòng)點(diǎn)所對(duì)應(yīng)的數(shù)是_________

4)當(dāng)動(dòng)點(diǎn)運(yùn)動(dòng)秒鐘時(shí),動(dòng)點(diǎn)與動(dòng)點(diǎn)之的距離是________單位長(zhǎng)度.

5)經(jīng)過(guò)________秒鐘,兩動(dòng)點(diǎn)在數(shù)軸上相距個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)長(zhǎng)方形盒子的長(zhǎng)、寬、高分別是4cm4cm,6cm

1)一只螞蟻想從盒底的點(diǎn)A沿盒的表面爬到盒頂?shù)狞c(diǎn)B,請(qǐng)你幫螞蟻設(shè)計(jì)一條最短的路線(xiàn),螞蟻要爬行的最短路線(xiàn)是多少?

2)若將一根木棒放進(jìn)盒子里并能蓋上蓋子,則能放入改盒子里的木棒的最大長(zhǎng)是多少cm?(結(jié)果可保留根號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案