【題目】如圖,AF∥DE,B為AF上一點(diǎn),∠ABC=60°,交ED于C,CM平分∠BCE,∠MCN=90°.
(1)求∠DCN的度數(shù);
(2)若∠CBF的平分線交CN于N,求證:BN∥CM.
【答案】(1)∠DCN=30°;(2)見(jiàn)解析
【解析】
(1)先根據(jù)平行線性質(zhì)求出∠BCE和∠BCD,再根據(jù)角平分線的性質(zhì)求出∠MCB,然后根據(jù)角的和差可得∠BCN,繼而可得答案;
(2)先求出∠FBC和∠NBC,然后根據(jù)平行線的判定方法即可證得結(jié)論.
解:(1)∵AF∥DE,∠ABC=60°,
∴∠BCE=180°﹣60°=120°,∠BCD=∠ABC=60°,
∵CM平分∠BCE,
∴∠MCB=60°,
∵∠MCN=90°,
∴∠BCN=90°﹣60°=30°,
∴∠DCN=60°﹣30°=30°;
(2)∵∠ABC=60°,
∴∠FBC=120°,
∵BN平分∠FBC,
∴∠NBC=60°,
∵∠BCM=60°,
∴∠NBC=∠BCM,
∴BN∥CM.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明同學(xué)在A、B兩家超市發(fā)現(xiàn)他看中的隨身聽(tīng)和書(shū)包的單價(jià)都相同,隨身聽(tīng)和書(shū)包單價(jià)之和是452元,且隨身聽(tīng)的單價(jià)比書(shū)包單價(jià)的4倍少8元.
(1)求小明看中的隨身聽(tīng)和書(shū)包單價(jià)各是多少元?
(2)假日期間商家開(kāi)展促銷(xiāo)活動(dòng),超市A所有商品打八折銷(xiāo)售,超市B全場(chǎng)購(gòu)物滿(mǎn)100元返購(gòu)物券30元銷(xiāo)售(購(gòu)物滿(mǎn)100元返購(gòu)物券30元,購(gòu)物滿(mǎn)200元返購(gòu)物券60元,以此類(lèi)推;不足100元不返券,購(gòu)物券可通用).小明只有400元錢(qián),他能買(mǎi)到一只隨身聽(tīng)和一個(gè)書(shū)包嗎?若能,選擇在哪一家購(gòu)買(mǎi)更省錢(qián).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面上,矩形ABCD與直徑為QP的半圓K如圖1擺放,分別延長(zhǎng)DA和QP交于點(diǎn)O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.讓線段OD及矩形ABCD位置固定,將線段OQ連帶著半圓K一起繞著點(diǎn)O按逆時(shí)針?lè)较蜷_(kāi)始旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°≤α≤60°).
發(fā)現(xiàn):如圖2,當(dāng)點(diǎn)P恰好落在BC邊上時(shí),求a的值即陰影部分的面積;
拓展:如圖3,當(dāng)線段OQ與CB邊交于點(diǎn)M,與BA邊交于點(diǎn)N時(shí),設(shè)BM=x(x>0),用含x的代數(shù)式表示BN的長(zhǎng),并求x的取值范圍.
探究:當(dāng)半圓K與矩形ABCD的邊相切時(shí),直接寫(xiě)出sinα的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠CAB,CD=1.5,BD=2.5,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫作格點(diǎn).△ABC的三個(gè)頂點(diǎn)A,B,C都在格點(diǎn)上,將△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°得到△AB′C′.
(1)在正方形網(wǎng)格中,畫(huà)出△AB'C′;
(2)畫(huà)出△AB′C′向左平移4格后的△A′B″C″;
(3)計(jì)算線段AB在變換到AB′的過(guò)程中掃過(guò)區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下面直角坐標(biāo)系中,已知A(0,a)、B(b,0)、C(b,c)三點(diǎn),其中a、b、c滿(mǎn)足關(guān)系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0.
(1)a= ;b= ;c= ;
(2)在第二象限內(nèi),是否存在點(diǎn)P(m,),使四邊形ABOP的面積與△ABC的面積相等?若存在,求出點(diǎn)m的值;若不存在,請(qǐng)說(shuō)明理由;
(3)D為線段OB上一動(dòng)點(diǎn),連接CD,過(guò)D作DE⊥CD交y軸于點(diǎn)E,EP、CP分別平分∠DEO和∠DCB,當(dāng)點(diǎn)D在OB上運(yùn)動(dòng)的過(guò)程中,∠P的度數(shù)是否變化,若不變,請(qǐng)求出∠P的度數(shù);若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫(huà)弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=kx2+2(k﹣3)x+(k﹣3)的圖象開(kāi)口向上,且k為整數(shù),且該拋物線與x軸有兩個(gè)交點(diǎn)(a,0)和(b,0).一次函數(shù)y1=(k﹣2)x+m與反比例函數(shù)y2= 的圖象都經(jīng)過(guò)(a,b).
(1)求k的值;
(2)求一次函數(shù)和反比例函數(shù)的解析式,并直接寫(xiě)出y1>y2時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若方程 (m3)xm27x+3=0 是關(guān)于x的一元二次方程,則方程( )
A.無(wú)實(shí)數(shù)根
B.有兩個(gè)相等的實(shí)數(shù)根
C.有兩個(gè)不相等的實(shí)數(shù)根
D.有一個(gè)根
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com