【題目】李老伯想用24米長的舊木料,靠米長的圍墻造一個如圖所示的豬舍,它們的平面圖是一排大小相等的三個長方形,總面積為32平方米.

(1)求豬舍的長BC和寬AB各為多少米?

(2)題中圍墻的長度米對豬舍的長和寬是否有影響?怎樣影響?

【答案】1,,.(2a決定了BC的最大值.

【解析】

1)設(shè)AB=x,根據(jù)柵欄的總長度24表示出三間豬舍與舊墻平行的一邊的總長為,再根據(jù)長方形的面積公式根據(jù)豬舍的總面積為32,即可列方程求解.

2)圍墻的長度決定了間豬舍與舊墻平行的一邊的總長最大值.

解:(1)設(shè)AB=x,根據(jù)題意可知,三間豬舍與舊墻平行的一邊的總長為,則,

即:,

解得,,

當(dāng)時,;

當(dāng)時,

2)舊墻的長度a會對豬舍的長度有影響,決定了BC的最大值,

當(dāng)舊墻的長度a小于16米且大于或等于8米,不適用,.適合.

當(dāng)當(dāng)舊墻的長度a小于8米時,都不適合.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,反比例函數(shù)的圖象過第二象限內(nèi)的點軸于,面積為3,若直線經(jīng)過點,并且經(jīng)過反比例函數(shù)的圖象上另一點.

(1)求反比例函數(shù)的解析式;

(2)求直線解析式

(3)的面積;

(4)直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強學(xué)生體質(zhì),決定開設(shè)以下體育課外活動項目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學(xué)生最喜歡哪一種活動項目,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,

請回答下列問題:

1)這次被調(diào)查的學(xué)生共有多少人?

2)請你將條形統(tǒng)計圖(2)補充完整;

3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】100厘米長的鉛絲,彎折成一個長方形的模型.

(1)設(shè)長方形的面積為S平方厘米,長方形的長為厘米,用的式子表示S;

(2)當(dāng)S=400平方厘米時,求的值;

(3)當(dāng)S=625平方厘米時,求的值;

(4)S的值會不會為700平方厘米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)課上,老師給出了如下問題:

1)以下是小剛的解答過程,請你將解答過程補充完整:

解:如圖2,因為,平分,

所以____________(角平分線的定義).

因為

所以______.

2)小戴說:我覺得這道題有兩種情況,小剛考慮的是內(nèi)部的情況,事實上,還可能在的內(nèi)部”.根據(jù)小戴的想法,請你在圖1中畫出另一種情況對應(yīng)的圖形,并直接寫出的度數(shù):______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC,AB于點E,F(xiàn).

(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;

(2)若BD=2,BF=2,求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB6,ECD的中點,將△ADE沿AE翻折至△AFE,連接CF,則CF的長度是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C在線段AB上,M、N分別是線段ACBC的中點,

(1)AC=7cm,BC=5cm,求線段MN的長;

(2)AB=a,C為線段AB上任意一點,你能用含a的代數(shù)式表示MN的長度嗎?若能,請寫出結(jié)果與過程,若不能,請說明理由;

(3)若將(2)C為線段AB上任意一點改為C為直線AB上任意一點,其余條件不變,(2)中的結(jié)論是否仍然成立?請畫圖并寫出說明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為4個單位長度的正方形ABCD的邊AB與等腰直角三角形EFG的斜邊FG重合,△EFG

以每秒1個單位長度的速度沿BC向右勻速運動(保持FG⊥BC),當(dāng)點E運動到CD邊上時△EFG停止

運動.設(shè)△EFG的運動時間為t秒,△EFG與正方形ABCD重疊部分的面積為S,則S關(guān)于t的函數(shù)大

致圖象為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案