【題目】如圖,已知△ABC中,AB=AC=2,∠B=30°,P是BC邊上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PD⊥BC,交△ABC的AB邊于點(diǎn)D.若設(shè)PD為x,△BPD的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
【答案】C
【解析】解:⑴當(dāng)0<x≤1時(shí),在△ABC中,AB=AC=2,∠B=30°,PD⊥BC,
∴PD= x;
∴y= BP×DP= x2(0<x≤1),
∵ >0,∴函數(shù)圖象開口向上;
⑵當(dāng)1<x<2,同理證得PD= (2 ﹣x)=2﹣ x;
∴y= BP×DP= x×(2﹣ x),
y=﹣ x2+x;
∵﹣ <0,
∴函數(shù)圖象開口向下;
綜上,答案C的圖象大致符合.
故選C
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的圖象的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點(diǎn),∠B=30°,∠DAB=45°.求證:AC=DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探索與發(fā)現(xiàn)
(1)正方形ABCD中有菱形PEFG,當(dāng)它們的對(duì)角線重合,且點(diǎn)P與點(diǎn)B重合時(shí)(如圖1),通過(guò)觀察或測(cè)量,猜想線段AE與CG的數(shù)量關(guān)系,并證明你的猜想;
(2)當(dāng)(1)中的菱形PEFG沿著正方形ABCD的對(duì)角線平移到如圖2的位置時(shí),猜想線段AE與CG的數(shù)量關(guān)系,只寫出猜想不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把正整數(shù)1,2,3,…,2018排成如圖所示的7列,規(guī)定從上到下依次為第1行、第2行、第3行、…,從左到右依次為第1至7列.
(1)數(shù)2018在第______行第______列;
(2)按如圖所示的方法用方框框出四個(gè)數(shù),這四個(gè)數(shù)的和能否為296?如果能,求出這四個(gè)數(shù);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用同樣規(guī)格的黑白兩種正方形瓷磚鋪設(shè)正方形地面,觀察圖形并猜想填空:當(dāng)黑色瓷磚為28塊時(shí),白色瓷磚塊數(shù)為( 。
A. 27 B. 28 C. 33 D. 35
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1的解析式為y=-x+4,直線l2的解析式為y=x-2,l1和l2的交點(diǎn)為點(diǎn)B.
(1)直接寫出點(diǎn)B坐標(biāo);
(2)平行于y軸的直線交x軸于點(diǎn)M,交直線l1于E,交直線l2于F.
①分別求出當(dāng)x =2和x =4時(shí)E F的值.
②直接寫出線段E F的長(zhǎng)y與x的函數(shù)關(guān)系式,并畫出函數(shù)圖像L.
③在②的條件下,如果直線y=kx+b與L只有一個(gè)公共點(diǎn),直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1~4,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個(gè)三角形的內(nèi)切圓,依此類推,圖10中有10個(gè)直角三角形的內(nèi)切圓,它們的面積分別記為S1 , S2 , S3 , …,S10 , 則S1+S2+S3+…+S10= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,BE是AC上的高,CF是AB上的高,H是BE和CF的交點(diǎn),求、和的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com