【題目】如圖,正方形ABCD中,BC=2,點M是邊AB的中點,連接DM,DM與AC交于點P,點E在DC上,點F在DP上,且∠DFE=45°.若PF= ,則CE= .
【答案】
【解析】解:如圖,連接EF.
∵四邊形ABCD是正方形,
∴AB=BC=CD=DA=2,∠DAB=90°,∠DCP=45°,
∴AM=BM=1,
在Rt△ADM中,DM= = = ,
∵AM∥CD,
∴ = = ,
∴DP= ,∵PF= ,
∴DF=DP=PF= ,
∵∠EDF=∠PDC,∠DFE=∠DCP,
∴△DEF∽△DPC,
∴ = ,
∴ = ,
∴DE= ,
∴CE=CD﹣DE=2﹣ = .
所以答案是 .
【考點精析】根據(jù)題目的已知條件,利用正方形的性質和相似三角形的判定與性質的相關知識可以得到問題的答案,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學 來源: 題型:
【題目】小明和小亮用6張背面完全相同的紙牌進行摸牌游戲,游戲規(guī)則如下:將牌面分別標有數(shù)字1、3、6的三張紙牌給小明,將牌面分別標有數(shù)字2、4、5的三張紙牌給小亮,小明小亮分別將紙牌背面朝上,從各自的三張紙牌中隨機抽出一張,并將抽出的兩張卡片上的數(shù)字相加,如果和為偶數(shù),則小明獲勝;如果和為奇數(shù),則小亮獲勝.
(1)小明抽到標有數(shù)字6的紙牌的概率為;
(2)請用樹狀圖或列表的方法求小亮獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,BC>AB,∠BAD的平分線AF與BD、BC分別交于點E、F,點O是BD的中點,直線OK∥AF,交AD于點K,交BC于點G.
(1)求證:①△DOK≌△BOG;②AB+AK=BG;
(2)若KD=KG,BC=4﹣ .
①求KD的長度;
②如圖2,點P是線段KD上的動點(不與點D、K重合),PM∥DG交KG于點M,PN∥KG交DG于點N,設PD=m,當S△PMN= 時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑為10,弦AB的長為6,M是弦AB上的一動點,則線段的OM的長的取值范圍是( )
A.3≤OM≤5
B.4≤OM≤5
C.3<OM<5
D.4<OM<5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別是可活動的菱形和平行四邊形學具,已知平行四邊形較短的邊與菱形的邊長相等.
(1)在一次數(shù)學活動中,某小組學生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經(jīng)過點C,連接DE交AF于點M,觀察發(fā)現(xiàn):點M是DE的中點.
下面是兩位學生有代表性的證明思路:
思路1:不需作輔助線,直接證三角形全等;
思路2:不證三角形全等,連接BD交AF于點H.…
請參考上面的思路,證明點M是DE的中點(只需用一種方法證明);
(2)如圖2,在(1)的前提下,當∠ABE=135°時,延長AD、EF交于點N,求 的值;
(3)在(2)的條件下,若 =k(k為大于 的常數(shù)),直接用含k的代數(shù)式表示 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,直徑CD垂直于不過圓心O的弦AB,垂足為點N,連接AC,點E在AB上,且AE=CE
(1)求證:AC2=AEAB;
(2)過點B作⊙O的切線交EC的延長線于點P,試判斷PB與PE是否相等,并說明理由;
(3)設⊙O半徑為4,點N為OC中點,點Q在⊙O上,求線段PQ的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列運算正確的是( )
A. (a2+2b2)﹣2(﹣a2+b2)=3a2+b2
B.﹣a﹣1=
C. (﹣a)3m÷am=(﹣1)ma2m
D. 6x2﹣5x﹣1=(2x﹣1)(3x﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東60°方向,距離燈塔86n mile的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B處,此時,B處與燈塔P的距離約為 n mile.(結果取整數(shù),參考數(shù)據(jù): ≈1.7, ≈1.4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com