已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=
5
.下列結(jié)論:
①△APD≌△AEB;
②點(diǎn)B到直線AE的距離為
2
;
③EB⊥ED;
④S△APD+S△APB=1+
6
;
⑤S正方形ABCD=4+
6
.其中正確結(jié)論的序號(hào)是(  )
A.①③④B.①②⑤C.③④⑤D.①③⑤

①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∴△APD≌△AEB(故①正確);
③∵△APD≌△AEB,
∴∠APD=∠AEB,
又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED(故③正確);
②過B作BF⊥AE,交AE的延長線于F,
∵AE=AP,∠EAP=90°,
∴∠AEP=∠APE=45°,
又∵③中EB⊥ED,BF⊥AF,
∴∠FEB=∠FBE=45°,
又∵BE=
BP2-PE2
=
5-2
=
3
,
∴BF=EF=
6
2
(故②不正確);
④如圖,連接BD,在Rt△AEP中,
∵AE=AP=1,
∴EP=
2
,
又∵PB=
5
,
∴BE=
3
,
∵△APD≌△AEB,
∴PD=BE=
3
,
∴S△ABP+S△ADP=S△ABD-S△BDP=
1
2
S正方形ABCD-
1
2
×DP×BE=
1
2
×(4+
6
)-
1
2
×
3
×
3
=
1
2
+
6
2
.(故④不正確).
⑤∵EF=BF=
6
2
,AE=1,
∴在Rt△ABF中,AB2=(AE+EF)2+BF2=4+
6

∴S正方形ABCD=AB2=4+
6
(故⑤正確);
故選:D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:等腰梯形ABCD,ADBC,AB=AD=DC,∠B=60°,點(diǎn)E在CD邊上運(yùn)動(dòng)(點(diǎn)E與C、D兩點(diǎn)不重合),∠EAF=60°,過點(diǎn)E作EMBC交AF于點(diǎn)M.
(1)如圖1,求證:BF+DE=EM;
(2)連接BE交AF于點(diǎn)N,若AF:AE=2:3,F(xiàn)C=4,求MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,∠ACB=90°,D為AB中點(diǎn),四邊形BCED為平行四邊形,DE、AC相交于F.
(1)試確定四邊形ADCE的形狀,并說明理由;
(2)若AB=16,AC=12,求四邊形ADCE的面積;
(3)若四邊形ADCE為正方形,△ABC應(yīng)添加什么條件,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,P是正方形ABCD內(nèi)一點(diǎn),在正方形ABCD外有一點(diǎn)E,滿足∠ABE=∠CBP,BE=BP.
(1)在圖中是否存在兩個(gè)全等的三角形,若存在請寫出這兩個(gè)三角形并證明;若不存在請說明理由;
(2)若(1)中存在,這兩個(gè)三角形通過旋轉(zhuǎn)能夠互相重合嗎?若重合請說出旋轉(zhuǎn)的過程;若不重合請說明理由;
(3)PB與BE有怎樣的位置關(guān)系,說明理由;
(4)若PA=1,PB=2,∠APB=135°,求AE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)C是線段AB上的任意一點(diǎn)(異于點(diǎn)A、B),分別以AC、BC為邊在線段AB的兩側(cè)作正方形ACDE和BCFG,連接AF、BD.
(1)證明:AF=BD;
(2)當(dāng)點(diǎn)C位于線段AB何處時(shí),邊AF、BD所在直線互相平行?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,四邊形ABCD是正方形,CE=MN,∠MCE=35°,那么∠ANM等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖以正方形ABCD的中心為原點(diǎn)建立平面直角坐標(biāo)系,點(diǎn)A的坐標(biāo)為﹙
3
,
3

①直接標(biāo)出點(diǎn)B,C,D的坐標(biāo).
②將正方形ABCD向左平移
3
個(gè)單位長度,求所得四邊形的周長及直接寫出其中一個(gè)頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

正方形ABCD的對角線AC上有一點(diǎn)E,AE=AB,則∠ABE=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,O正方形ABCD的中心,BE平分∠DBC,交DC于點(diǎn)E,延長BC到點(diǎn)F,使CF=CE,連接DF,交BE的延長線于點(diǎn)G,連接OG.
(1)求證:△BCE≌△DCF;
(2)OG與BF有什么數(shù)量關(guān)系?證明你的結(jié)論;
(3)若GE•GB=4-2
2
,求正方形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊答案