【題目】如圖,AB為⊙O的直徑,點C在⊙O上,延長BC至點D,使DC=CB,延長DA與⊙O的另一個交點為E,連接AC,CE.
(1)求證:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的長.
【答案】(1)證明見解析;(2)1+.
【解析】試題分析:(1)由AB為⊙O的直徑,易證得AC⊥BD,又由DC=CB,根據(jù)線段垂直平分線的性質(zhì),可證得AD=AB,即可得:∠B=∠D;
(2)首先設(shè)BC=x,則AC=x-2,由在Rt△ABC中,AC2+BC2=AB2,可得方程:(x-2)2+x2=42,解此方程即可求得CB的長,繼而求得CE的長.
試題解析:(1)證明:∵AB為⊙O的直徑,
∴∠ACB=90°,
∴AC⊥BC,
又∵DC=CB,
∴AD=AB,
∴∠B=∠D;
(2)解:設(shè)BC=x,則AC=x-2,
在Rt△ABC中,AC2+BC2=AB2,
∴(x-2)2+x2=42,
解得:x1=1+,x2=1-(舍去),
∵∠B=∠E,∠B=∠D,
∴∠D=∠E,
∴CD=CE,
∵CD=CB,
∴CE=CB=1+.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在C′處,折痕為EF,若AB=1,BC=2,則△ABE和△BC′F的周長之和為( )
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店將某種微波爐按原價提高20%后標(biāo)價,又以9折優(yōu)惠賣岀,結(jié)果每臺微波爐比原價多賺了80元,這種微彼爐原價是_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】榮慶公司計劃從商店購買同一品牌的臺燈和手電筒,已知購買一個臺燈比購買一個手電筒多用20元,若用400元購買臺燈和用160元購買手電筒,則購買臺燈的個數(shù)是購買手電筒個數(shù)的一半.
(1)求購買該品牌一個臺燈、一個手電筒各需要多少元?
(2)經(jīng)商談,商店給予榮慶公司購買一個該品牌臺燈贈送一個該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個數(shù)是臺燈個數(shù)的2倍還多8個,且該公司購買臺燈和手電筒的總費用不超過670元,那么榮慶公司最多可購買多少個該品牌臺燈?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.點A、B、C、D在⊙O上,AC⊥BD于點E,過點O作OF⊥BC于F,求證:
(1)△AEB∽△OFC;
(2)AD=2FO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)老師在課堂上提出一個問題:“通過探究知道: ≈1.414…,它是個無限不循環(huán)小數(shù),也叫無理數(shù),它的整數(shù)部分是1,那么有誰能說出它的小數(shù)部分是多少”,小明舉手回答:它的小數(shù)部分我們無法全部寫出來,但可以用﹣1來表示它的小數(shù)部分,張老師夸獎小明真聰明,肯定了他的說法.現(xiàn)請你根據(jù)小明的說法解答:
(1)的小數(shù)部分是a, 的整數(shù)部分是b,求a+b﹣的值.
(2)已知8+=x+y,其中x是一個整數(shù),0<y<1,求3x+(y﹣)2018的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按下列程序計算,把答案填寫在表格里,然后看看有什么規(guī)律,想想為什么會有
這個規(guī)律?
(1)填寫表內(nèi)空格:
輸入 | 3 | 2 | -2 | … | |
輸出答案 | 0 | … |
(2)你發(fā)現(xiàn)的規(guī)律是____________.
(3)用簡要過程說明你發(fā)現(xiàn)的規(guī)律的正確性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com