【題目】如圖,AB為⊙O的直徑,點C在⊙O上,延長BC至點D,使DC=CB,延長DA與⊙O的另一個交點為E,連接AC,CE.

(1)求證:∠B=D;

(2)若AB=4,BC﹣AC=2,求CE的長.

【答案】(1)證明見解析;(2)1+

【解析】試題分析:(1)由AB⊙O的直徑,易證得AC⊥BD,又由DC=CB,根據(jù)線段垂直平分線的性質(zhì),可證得AD=AB,即可得:∠B=∠D;

2)首先設(shè)BC=x,則AC=x-2,由在Rt△ABC中,AC2+BC2=AB2,可得方程:(x-22+x2=42,解此方程即可求得CB的長,繼而求得CE的長.

試題解析:(1)證明:∵AB⊙O的直徑,

∴∠ACB=90°,

∴AC⊥BC

∵DC=CB,

∴AD=AB

∴∠B=∠D;

2)解:設(shè)BC=x,則AC=x-2

Rt△ABC中,AC2+BC2=AB2,

x-22+x2=42

解得:x1=1+,x2=1-(舍去),

∵∠B=∠E∠B=∠D,

∴∠D=∠E,

∴CD=CE,

∵CD=CB,

∴CE=CB=1+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在C′處,折痕為EF,若AB=1,BC=2,則△ABE△BC′F的周長之和為(  )

A. 3 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家商店將某種微波爐按原價提高20%后標(biāo)價,又以9折優(yōu)惠賣岀,結(jié)果每臺微波爐比原價多賺了80元,這種微彼爐原價是_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】榮慶公司計劃從商店購買同一品牌的臺燈和手電筒,已知購買一個臺燈比購買一個手電筒多用20元,若用400元購買臺燈和用160元購買手電筒,則購買臺燈的個數(shù)是購買手電筒個數(shù)的一半.

(1)求購買該品牌一個臺燈、一個手電筒各需要多少元?

(2)經(jīng)商談,商店給予榮慶公司購買一個該品牌臺燈贈送一個該品牌手電筒的優(yōu)惠,如果榮慶公司需要手電筒的個數(shù)是臺燈個數(shù)的2倍還多8個,且該公司購買臺燈和手電筒的總費用不超過670元,那么榮慶公司最多可購買多少個該品牌臺燈?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 M=(x-3)(x-5),N=(x-2)(x-6),試求 M-N 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.點A、B、C、D在⊙O上,ACBD于點E,過點OOFBCF,求證:

(1)AEB∽△OFC;

(2)AD=2FO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)老師在課堂上提出一個問題:通過探究知道: ≈1.414…,它是個無限不循環(huán)小數(shù),也叫無理數(shù),它的整數(shù)部分是1,那么有誰能說出它的小數(shù)部分是多少,小明舉手回答:它的小數(shù)部分我們無法全部寫出來,但可以用1來表示它的小數(shù)部分,張老師夸獎小明真聰明,肯定了他的說法.現(xiàn)請你根據(jù)小明的說法解答:

1的小數(shù)部分是a, 的整數(shù)部分是b,求a+b的值.

2)已知8+=x+y,其中x是一個整數(shù),0y1,求3x+y2018的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按下列程序計算,把答案填寫在表格里,然后看看有什么規(guī)律,想想為什么會有

這個規(guī)律?

(1)填寫表內(nèi)空格:

輸入

3

2

-2

輸出答案

0

(2)你發(fā)現(xiàn)的規(guī)律是____________.

(3)用簡要過程說明你發(fā)現(xiàn)的規(guī)律的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用四舍五入法將1.89345取近似數(shù)并精確到0.001,得到的值是__________

查看答案和解析>>

同步練習(xí)冊答案