如圖1,線段過圓心,交圓兩點,切圓于點,作,垂足為,連結
(1)寫出圖1中所有相等的角(直角除外),并給出證明;
(2)若圖1中的切線變?yōu)閳D2中割線的情形,與圓交于兩點,交于點,,寫出圖2中相等的角(寫出三組即可,直角除外);
(3)在圖2中,證明:
(1)圖1中相等的角有:
證明:連結,則
,,
.又為直徑,,

(2)
(三組即可)
(3)易證
(1)見切點連過切點的半徑,得垂直,從而得到,利用同圓中半徑相等,得到相等的角,利用平行線遷移等角得到相等的角,利用同角的余角相等得到相等的角,從而得到第(1)的答案;(2)利用同弧所對的圓周角相等即可解決;(3)“等積化等比”“平行或者三角形相似”,從而結論得到證明.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系中有兩點,,以原點為位似中心,相似比為1∶3.把線段縮小,則過點對應點的反比例函數(shù)的解析式為(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,點將線段分成兩部分,如果,那么稱點為線段的黃金分割點.
某研究小組在進行課題學習時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線將一個面積為的圖形分成兩部分,這兩部分的面積分別為,,如果,那么稱直線為該圖形的黃金分割線.

(1)研究小組猜想:在中,若點邊上的黃金分割點(如圖2),則直線的黃金分割線.你認為對嗎?為什么?
(2)請你說明:三角形的中線是否也是該三角形的黃金分割線?
(3)研究小組在進一步探究中發(fā)現(xiàn):過點任作一條直線交于點,再過點作直線,交于點,連接(如圖3),則直線也是的黃金分割線.
請你說明理由.
(4)如圖4,點的邊的黃金分割點,過點,交于點,顯然直線的黃金分割線.請你畫一條的黃金分割線,使它不經(jīng)過各邊黃金分割點.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖甲,正方形ABCD的邊長為2,點M是BC的中點,P是線段MC上的一個動點(不運動至M,C),以AB為直徑作⊙O,過點P的切線交AD于點F,切點為E。

(1)求四邊形CDFP的周長;(3分)
(2)請連結OF,OP,求證:OF⊥OP;(4分)
(3)延長DC,FP相交于點G,連結OE并延長交直線DC于H(如圖乙).是否存在點P
使△EFO∽△EHG(其對應關系是                              )?如果存在,試求此時的BP的長;如果不存在,請說明理由。(5分)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,DE是△ABC的中位線,△ADE的面積為3cm2,則四邊形DBCE的面積為        cm2。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,陽光通過窗口照到室內(nèi),在地面上留下1.6m寬的亮區(qū)DE,已知亮區(qū)一邊到窗下的墻腳距離CE=3.6m,窗高AB=1.2m,那么窗口底邊離地面的高度BC=          m .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖8,原點O是△ABC和△A′B′C′的位似中心,點A(1,0)與點A′(-2,0)是對應點,△ABC的面積是,則△A′B′C′的面積是________________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某市經(jīng)濟開發(fā)區(qū)建有三個食品加工廠,這三個工廠和開發(fā)區(qū)處的自來水廠正好在一個矩形的四個頂點上,它們之間有公路相通,且米,米.自來水公司已經(jīng)修好一條自來水主管道兩廠之間的公路與自來水管道交于處,米.若自來水主管道到各工廠的自來水管道由各廠負擔,每米造價800元.

(1)要使修建自來水管道的造價最低,這三個工廠的自來水管道路線應怎樣設計?并在圖形中畫出;
(2)求出各廠所修建的自來水管道的最低的造價各是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知△ABC與△DEF相似且面積的比為4:9,則△ABC與△DEF的周長比為_____________.

查看答案和解析>>

同步練習冊答案