【題目】某市在一次扶貧助殘活動(dòng)中,共捐款5280000元,將5280000用科學(xué)記數(shù)法表示為( )
A. 5.28×106 B. 5.28×107
C. 52.8×106 D. 0.528×107
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
問題:如圖1,在△中,點(diǎn)為的中點(diǎn),求證: <小明提供了他研究這個(gè)問題的思路:從點(diǎn)為的中點(diǎn)出發(fā),可以構(gòu)造以、為鄰邊的平行四邊形,結(jié)合平行四邊形的性質(zhì)以及三角形兩邊之和大于第三邊的性質(zhì)便可解決這個(gè)問題.請(qǐng)結(jié)合小明研究問題的思路,解決下列問題:
(1)完成上面問題的解答;
(2)如果在圖1中,∠=60°,延長(zhǎng)到,使得,延長(zhǎng)到,使得,連結(jié),如圖2. 請(qǐng)猜想線段與線段之間的數(shù)量關(guān)系.并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F為AB的中點(diǎn),DE與AB交于點(diǎn)G,EF與AC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH=BD;其中正確結(jié)論的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b滿足(a—2b) (a+b)—4ab+4b2+2b=a—a2,且a≠2b,則a與b的數(shù)量關(guān)系是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】測(cè)量計(jì)算是日常生活中常見的問題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點(diǎn)處觀測(cè)旗桿頂點(diǎn)A的仰角為50°,觀測(cè)旗桿底部B點(diǎn)的仰角為45°,(可用的參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2)
(1)若已知CD=20米,求建筑物BC的高度;
(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】頻數(shù)分布直方圖反映了( )
A. 樣本數(shù)據(jù)的多少 B. 樣本數(shù)據(jù)的平均水平
C. 樣本數(shù)據(jù)所分組數(shù) D. 樣本數(shù)據(jù)在各組的頻數(shù)分布情況
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,BC=6cm. 射線AG//BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時(shí),求證:△ADE≌△CDF;
(2)填空:當(dāng)t為_________s時(shí),四邊形ACFE是菱形;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:
1.新知學(xué)習(xí)
若把將一個(gè)平面圖形分為面積相等的兩個(gè)部分的直線叫做該平面圖形的“面線”,其“面線”被該平面圖形截得的線段叫做該平面圖形的“面徑”(例如圓的直徑就是圓的“面徑”).
2.解決問題
已知等邊三角形ABC的邊長(zhǎng)為2.
(1)如圖一,若AD⊥BC,垂足為D,試說明AD是△ABC的一條面徑,并求AD的長(zhǎng);
(2)如圖二,若ME∥BC,且ME是△ABC的一條面徑,求面徑ME的長(zhǎng);
(3)如圖三,已知D為BC的中點(diǎn),連接AD,M為AB上的一點(diǎn)(0<AM<1),E是DC上的一點(diǎn),連接ME,ME與AD交于點(diǎn)O,且S△MOA=S△DOE.
①求證:ME是△ABC的面徑;
②連接AE,求證:MD∥AE;
(4)請(qǐng)你猜測(cè)等邊三角形ABC的面徑長(zhǎng)l的取值范圍(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(0,a)在y軸的負(fù)半軸上,則點(diǎn)Q(﹣a2﹣1,﹣a+1)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com