【題目】11月讀書節(jié),深圳市為統(tǒng)計某學校初三學生讀書狀況,如下圖:

(1)求三本以上的x值、參加調(diào)查的總人數(shù),并補全統(tǒng)計圖;
(2)三本以上的圓心角為 °
(3)全市有6.7萬學生,三本以上有 人.

【答案】
(1)

解:參加調(diào)查的總人數(shù):40÷10%=400(人),

x=100%﹣10%﹣25%﹣45%=20%,

看書三本以上的人數(shù):400×20%=80(人),

如圖所示;


(2)72
(3)13400
【解析】(2)20%×360°=72°,故答案為:72°;
(3)67000×20%=13400(人),故答案為:13400.
(1)根據(jù)看1本書的人數(shù)為40人,所占的百分比為10%,40÷10即可求出總人數(shù),用100%﹣10%﹣25%﹣45%即可得x的值,用總人數(shù)乘以x的值,即可得到3本以上的人數(shù),即可補全統(tǒng)計圖;
(2)用x的值乘以360°,即可得到圓心角;
(3)用6.7萬乘以三本以上的百分比,即可解答.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB=a,AD=b,點M為BC邊上一動點(點M與點B、C不重合),連接AM,過點M作MN⊥AM,垂足為M,MN交CD或CD的延長線于點N.

(1)求證:△CMN∽△BAM;
(2)設BM=x,CN=y,求y關于x的函數(shù)解析式.當x取何值時,y有最大值,并求出y的最大值;
(3)當點M在BC上運動時,求使得下列兩個條件都成立的b的取值范圍:①點N始終在線段CD上,②點M在某一位置時,點N恰好與點D重合.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一塊材料的形狀是銳角三角形ABC,邊BC=120mm,高AD=80mm,把它加工成正方形零件如圖1,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.

(1)求證:△AEF∽△ABC;
(2)求這個正方形零件的邊長;
(3)如果把它加工成矩形零件如圖2,問這個矩形的最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=x2+bx+c經(jīng)過A(0,2),B(3,2)兩點,若兩動點D、E同時從原點O分別沿著x軸、y軸正方向運動,點E的速度是每秒1個單位長度,點D的速度是每秒2個單位長度.

(1)求拋物線與x軸的交點坐標;
(2)若點C為拋物線與x軸的交點,是否存在點D,使A、B、C、D四點圍成的四邊形是平行四邊形?若存在,求點D的坐標;若不存在,說明理由;
(3)問幾秒鐘時,B、D、E在同一條直線上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】五邊形ABCDE中,∠EAB=∠ABC=∠BCD=90°,AB=BC,且滿足以點B為圓心,AB長為半徑的圓弧AC與邊DE相切于點F,連接BE,BD.

(1)如圖1,求∠EBD的度數(shù);
(2)如圖2,連接AC,分別與BE,BD相交于點G,H,若AB=1,∠DBC=15°,求AGHC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形OMTN中,OM=ON,TM=TN,我們把這種兩組鄰邊分別相等的四邊形叫做箏形.

(1)試探究箏形對角線之間的位置關系,并證明你的結論;
(2)在箏形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC為對角線,BD=8,
①是否存在一個圓使得A,B,C,D四個點都在這個圓上?若存在,求出圓的半徑;若不存在,請說明理由;
②過點B作BF⊥CD,垂足為F,BF交AC于點E,連接DE,當四邊形ABED為菱形時,求點F到AB的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一小球從斜坡O點處拋出,球的拋出路線可以用二次函數(shù)刻畫,斜坡可以用一次函數(shù)y=x刻畫.

(1)請用配方法求二次函數(shù)圖象的最高點P的坐標;
(2)小球的落點是A,求點A的坐標;
(3)連接拋物線的最高點P與點O、A得△POA,求△POA的面積
(4)在OA上方的拋物線上存在一點M(M與P不重合),△MOA的面積等于△POA的面積.請直接寫出點M的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知(b、c為常數(shù))的頂點為P,等腰直角三角形ABC的頂點A的坐標為(0,﹣1),點C的坐標為(4,3),直角頂點B在第四象限.

(1)如圖,若拋物線經(jīng)過A、B兩點,求拋物線的解析式.
(2)平移1中的拋物線,使頂點P在直線AC上并沿AC方向滑動距離為時,試證明:平移后的拋物線與直線AC交于x軸上的同一點.
(3)在2的情況下,若沿AC方向任意滑動時,設拋物線與直線AC的另一交點為Q,取BC的中點N,試探究NP+BQ是否存在最小值?若存在,求出該最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩個同心圓,大圓半徑為5cm,小圓的半徑為3cm,若大圓的弦AB與小圓相交,則弦AB的取值范圍是 .

查看答案和解析>>

同步練習冊答案