【題目】操作與探究
圖(1)
定義:三邊長和面積都是整數(shù)的三角形稱為“整數(shù)三角形”.
數(shù)學學習小組的同學從32根等長的火柴棒(每根長度記為1個單位)中取出若干根,首尾依次相接組成三角形,進行探究活動.
小東用12根火柴棒,擺成如圖所示的“整數(shù)三角形”;
小穎分用24根火柴棒擺出直角“整數(shù)三角形”;
小軍受到小東、小穎的啟發(fā),用30根火柴棒擺出直角“整數(shù)三角形”;
(1)請你畫出小穎和小軍擺出的直角“整數(shù)三角形”的示意圖;
(2)你能否也從中取出若干根,按下列要求擺出“整數(shù)三角形”,如果能,請畫出示意圖;如果不能,請說明理由.
①擺出一個等腰“整數(shù)三角形”;
②擺出一個非特殊(既非直角三角形,也非等腰三角形)“整數(shù)三角形”.
【答案】(1)小穎擺出直角“整數(shù)三角形”三邊為6,8,10;小軍擺出的直角“整數(shù)三角形”三邊為5,12,13.(2)①詳見解析;②詳見解析.
【解析】
(1)利用勾股定理求出6,8,10和5,12,13符合要求,即可得出答案;
(2)要擺出等腰“整數(shù)三角形”,需保證三邊長和面積都是整數(shù),由三線合一可知,等腰三角形的一半是直角三角形,即畫出直角三角形后再補充完整的等腰三角形;
(3)擺出一個非特殊“整數(shù)三角形”:要擺出“整數(shù)三角形”,需使三角形的底與高均為整數(shù),可將兩個直角三角形進行組合,常見的等高直角三角形有:6、8、10與8、15、17;9、12、15與5、12、13.
(1)如圖1,
小穎擺出直角“整數(shù)三角形”三邊為6,8,10;
小軍擺出的直角“整數(shù)三角形”三邊為5,12,13.
(2)擺出如圖2所示三個不同的等腰“整數(shù)三角形”:
(3)擺出如圖3所示一個非特殊“整數(shù)三角形”:
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,
(1)求證:AB=AC;
(2)已知S△ABC=40cm2,如圖2,動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當其中一點到達終點時整個運動都停止. 設(shè)點M運動的時間為t(秒),
①若△DMN的邊與BC平行,求t的值;
②若點E是邊AC的中點,問在點M運動的過程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,學校有一塊三角形草坪,數(shù)學課外小組的同學測得其三邊的長分別為AB=200米,AC=160米,BC=120米.
(1)小明根據(jù)測量的數(shù)據(jù),猜想△ABC是直角三角形,請判斷他的猜想是否正確,并說明理由;
(2)若計劃修一條從點C到BA邊的小路CH,使CH⊥AB于點H,求小路CH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰三角形ABC的底邊長BC=20cm,D是AC上的一點,且BD=16cm,CD=12cm.
(1)求證:BD⊥AC;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,下列能判定AB∥CD的條件有( )個.
(1)∠B+∠BDC=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.
A.1B.2C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB,CD被直線EF所截,如果要添加條件,使得MQ∥NP,那么下列條件中能判定MQ∥NP的是( )
A. ∠1=∠2 B. ∠BMF=∠DNF
C. ∠AMQ=∠CNP D. ∠1=∠2,∠BMF=∠DNF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于點A和點B,其中點A的坐標為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點D,與直線BC交于點E.
(1)求拋物線的解析式;
(2)若直線BC的函數(shù)解析式為y’=kx+b,求當滿足y<y’時,自變量x的取值范圍.
(3)平行于DE的一條動直線l與直線BC相交于點P,與拋物線相交于點Q,若以D、E、P、Q為頂點的四邊形是平行四邊形,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,和是兩個全等的三角形,,.現(xiàn)將和按如圖所示的方式疊放在一起,保持不動,運動,且滿足:點E在邊BC上運動(不與點B,C重合),且邊DE始終經(jīng)過點A,EF與AC交于點M .
(1)求證:∠BAE=∠MEC;
(2)當E在BC中點時,請求出ME:MF的值;
(3)在的運動過程中,能否構(gòu)成等腰三角形?若能,請直接寫出所有符合條件的BE的長;若不能,則請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com