正整數(shù)a,b,c是等腰三角形三邊的長,并且a+bc+b+ca=24,則這樣的三角形有


  1. A.
    1個
  2. B.
    2個
  3. C.
    3個
  4. D.
    4個
C
分析:先將a+bc+b+ca=24 可以化為 (a+b)(c+1)=24,然后根據(jù)24分解為大于等于2的兩個正整數(shù)的乘積有幾種組合討論是否符合題意即可得出答案.
解答:a+bc+b+ca=24 可以化為 (a+b)(c+1)=24,其中a,b,c都是正整數(shù),并且其中兩個數(shù)相等,
令a+b=A,c+1=C 則A,C為大于2的正整數(shù),
那么24分解為大于等于2的兩個正整數(shù)的乘積有幾種組合2×12,3×8,4×6,6×4,3×8,2×12,
①、A=2,C=12時,c=11,a+b=2,無法得到滿足等腰三角形的整數(shù)解;
②、A=3,C=8時,c=7,a+b=3,無法得到滿足等腰三角形的整數(shù)解;
③、A=4,C=6時,c=5,a+b=4,無法得到滿足等腰三角形的整數(shù)解;
④、A=6,C=4時,c=3,a+b=6,可以得到a=b=c=3,可以組成等腰三角形;
⑤、A=8,C=3時,c=2,a+b=8,可得a=b=4,c=2,可以組成等腰三角形,a=b=4是兩個腰;
⑥、A=12,C=2時,可得 a=b=6,c=1,可以組成等腰三角形,a=b=6是兩個腰.
∴一共有3個這樣的三角形.
故選C.
點評:本題考查數(shù)的整除性及等腰三角形的知識,難度一般,在解答本題時將原式化為因式相乘的形式及將24分解為大于等于2的兩個正整數(shù)的乘積有幾種組合是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料并解答問題:
我國是最早了解和應(yīng)用勾股定理的國家之一,古代印度、希臘、阿拉伯等許多國家也都很重視對勾股定理的研究和應(yīng)用,古希臘數(shù)學(xué)家畢達哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達哥拉斯定理”.
關(guān)于勾股定理的研究還有一個很重要的內(nèi)容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個正整數(shù)稱為勾股數(shù)”,以下是畢達哥拉斯等學(xué)派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股數(shù).
方法2:若任取兩個正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長的△ABC是直角三角形;
(2)請根據(jù)方法1和方法2按規(guī)律填寫下列表格:
精英家教網(wǎng)
(3)某園林管理處要在一塊綠地上植樹,使之構(gòu)成如下圖所示的圖案景觀,該圖案由四個全等的直角三角形組成,要求每個三角形頂點處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個三角形最短邊上都植6棵樹,且每個三角形的各邊長之比為5:12:13,那么這四個直角三角形的邊長共需植樹
 
棵.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是芳芳設(shè)計可自由轉(zhuǎn)動的均勻轉(zhuǎn)盤,將其等分為10個扇形,每個扇形寫有1個有理數(shù).想想看,轉(zhuǎn)得下列各數(shù)的概率是多少?
(1)轉(zhuǎn)得正數(shù);
(2)轉(zhuǎn)得正整數(shù);
(3)轉(zhuǎn)得絕對值<6的數(shù);
(4)轉(zhuǎn)得絕對值≥8的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•新華區(qū)一模)已知:等邊△ABC的面積為S,Dn,En,F(xiàn)n(n為正整數(shù)0分別是AB,BC,CA邊上的點,連接DnEn,EnFn,F(xiàn)nDn,可得△DnEnFn
如圖1,當AD1=BE1=CF1=
1
2
AB時,我們?nèi)菀椎玫健鱀1E1F1是等邊三角形,且SAD1F1=S△D1E1F1=
1
4
S.
探究論證:
(1)如圖2,當AD2=BE2=CF2=
1
3
AB時,
①△D2E2F2
等邊
等邊
三角形(填寫“等腰”或“等邊”或“不等邊”);
SAD2F2=
2
9
S
2
9
S
;S△D2E2F2=
1
3
S
1
3
S
(用含S的代數(shù)式表示);
③請說明以上結(jié)論的正確性.
猜想發(fā)現(xiàn):
(2)如圖3,當ADn=BEn=CFn=
1
n+1
AB時,
①△DnEnFn
等邊
等邊
三角形(填寫“等腰”或“等邊”或“不等邊”);
S△ADnFn=
n
(n+1)2
S
n
(n+1)2
S
;S△DnEnFn=
n2-n+1
(n+1)2
S
n2-n+1
(n+1)2
S
(用含S的代數(shù)式表示).
實際應(yīng)用:
(3)學(xué)校有一塊面積為49m2的等邊△ABC空地,按如圖4所示分割,其中AD6=BE6=CF6=
1
7
AB,計劃在△D6E6F6內(nèi)栽種花卉,其余地方鋪草坪,則栽種花卉(即陰影部分)的面積為多少m2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長AB=k(k是正整數(shù)),等邊三角形PAE的頂點P在正方形內(nèi),頂點E在邊AB上,且AE=1.將等邊三角形PAE在正方形內(nèi)按如圖中所示的方式,沿著正方形的邊AB、BC、CD、DA、AB、…連續(xù)地翻轉(zhuǎn)n次,使頂點P第一次回到原來的起始位置.
①如果k=1,那么頂點P第一次回到原來的起始位置時,△PAE沿正方形的邊連續(xù)翻轉(zhuǎn)的次數(shù)n=
12
12

②如果頂點P第一次回到原來的起始位置時,等邊三角形PAE沿正方形的邊連續(xù)翻轉(zhuǎn)的次數(shù)是84,那么正方形ABCD的邊長k=
7或21
7或21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我國是最早了解和應(yīng)用勾股定理的國家之一,古代印度、希臘、阿拉伯等許多國家也都很重視對勾股定理的研究和應(yīng)用,古希臘數(shù)學(xué)家畢達哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達哥拉斯定理”.
關(guān)于勾股定理的研究還有一個很重要的內(nèi)容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個正整數(shù)稱為勾股數(shù)”,以下是畢達哥拉斯等學(xué)派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=數(shù)學(xué)公式(m2-1)和c=數(shù)學(xué)公式(m2+1)是勾股數(shù).
方法2:若任取兩個正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長的△ABC是直角三角形;
(2)請根據(jù)方法1和方法2按規(guī)律填寫下列表格:

(3)某園林管理處要在一塊綠地上植樹,使之構(gòu)成如下圖所示的圖案景觀,該圖案由四個全等的直角三角形組成,要求每個三角形頂點處都植一棵樹,各邊上相鄰兩棵樹之間的距離均為1米,如果每個三角形最短邊上都植6棵樹,且每個三角形的各邊長之比為5:12:13,那么這四個直角三角形的邊長共需植樹______棵.

查看答案和解析>>

同步練習(xí)冊答案