【題目】如圖,在△ABC中,D,E分別是AB,AC的中點,過點E作EF∥AB,交BC于點F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時,四邊形DBFE是菱形?為什么?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當(dāng)CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y=ax2+4ax+4a+b(a≠0,b>0)的頂點為M,經(jīng)過原點O且與x軸另一交點為A.
(1)求點A的坐標(biāo);
(2)若△AMO為等腰直角三角形,求拋物線C1的解析式;
(3)現(xiàn)將拋物線C1繞著點P(m,0)旋轉(zhuǎn)180°后得到拋物線C2 , 若拋物線C2的頂點為N,當(dāng)b=1,且頂點N在拋物線C1上時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=6,BC=8,AB=10
(1)尺規(guī)作圖:作AD平分∠CAB,交BC于點D;
(2)求CD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個布口袋里裝有紅色、黑色、藍色和白色的小球各1個,如果閉上眼睛隨機地從布袋中取出一個球,記下顏色,放回布袋攪勻,再閉上眼睛隨機的再從布袋中取出一個球.求:
(1)連續(xù)兩次恰好都取出紅色球的概率;
(2)連續(xù)兩次恰好取出一紅、一黑的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】認真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題:
(1)已知,如圖1,△ABC中,P點是∠ABC和∠ACB的角平分線的交點,求證:∠P=∠A+90°。
(2)如圖2,若P點是∠ABC和∠ACB外角的角平分線的交點,∠A=80°,那么∠P=____°;
(3)如圖3,△ABC中,若P點是∠ABC外角和∠ACB外角的角平分線的交點,∠A=,那么∠P=________(請用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求拋物線的解析式
(1)已知拋物線的頂點為(﹣1,﹣3),與y軸的交點為(0,﹣5),求拋物線的解析式.
(2)求經(jīng)過A(1,4),B(﹣2,1)兩點,對稱軸為x=﹣1的拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料,并解決問題:
(1)如圖(1),等邊△ABC內(nèi)有一點P若點P到頂點A,B,C的距離分別為3,4,5欲求∠APB的度數(shù),由于PA,PB不在一個三角形中,為了解決本題我們可以將△ABP繞頂點A旋轉(zhuǎn)到△ACP′處,此時△ACP′≌△ABP這樣,就可以利用全等三角形知識,將三條線段的長度轉(zhuǎn)化到一個三角形中從而求出∠APB的度數(shù).
請將下列解題過程補充完整。
∵△ACP′≌△ABP,
∴AP′= =3,CP′= =4,∠ =∠APB.
由題意知旋轉(zhuǎn)角∠PA P′=60°,∴△AP P′為 三角形,
P P′=AP=3,∠A P′P=60°。
易證△P P′C為直角三角形,且∠P P′C=90°,
∴∠APB=∠AP′C=∠A P′P+∠P P′C= °+ °= °.
請你利用第(1)題的解答思想方法,解答下面問題:
已知如圖(2),△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,
求證:EF2=BE2+FC2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B的坐標(biāo)分別為(0,2),(1,0),直線y=﹣3與坐標(biāo)軸交于C、D兩點.
(1)求直線AB:y=kx+b與CD交點E的坐標(biāo);
(2)直接寫出不等式kx+b>﹣3的解集;
(3)求四邊形OBEC的面積;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com