【題目】閱讀下面材料,并解決問題:
(1)如圖(1),等邊△ABC內(nèi)有一點P若點P到頂點A,B,C的距離分別為3,4,5欲求∠APB的度數(shù),由于PA,PB不在一個三角形中,為了解決本題我們可以將△ABP繞頂點A旋轉(zhuǎn)到△ACP′處,此時△ACP′≌△ABP這樣,就可以利用全等三角形知識,將三條線段的長度轉(zhuǎn)化到一個三角形中從而求出∠APB的度數(shù).
請將下列解題過程補充完整。
∵△ACP′≌△ABP,
∴AP′= =3,CP′= =4,∠ =∠APB.
由題意知旋轉(zhuǎn)角∠PA P′=60°,∴△AP P′為 三角形,
P P′=AP=3,∠A P′P=60°。
易證△P P′C為直角三角形,且∠P P′C=90°,
∴∠APB=∠AP′C=∠A P′P+∠P P′C= °+ °= °.
請你利用第(1)題的解答思想方法,解答下面問題:
已知如圖(2),△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,
求證:EF2=BE2+FC2.
【答案】(1)AP,BP,AP′C,等邊,60,90,150;(2)見解析
【解析】
(1)根據(jù)旋轉(zhuǎn)變換前后的兩個三角形全等,全等三角形對應(yīng)邊相等,全等三角形對應(yīng)角相等以及等邊三角形的判定和勾股定理逆定理解答;
(2)把△ABE繞點A逆時針旋轉(zhuǎn)90°得到△ACE′,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AE′=AE,CE′=CE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,再求出∠E′AF=45°,從而得到∠EAF=∠E′AF,然后利用“邊角邊”證明△EAF和△E′AF全等,根據(jù)全等三角形對應(yīng)邊相等可得E′F=EF,再利用勾股定理列式即可得證.
(1).AP,BP,AP′C,等邊,60,90,150;
(2)把△ABE繞點A逆時針旋轉(zhuǎn)90°得到△ACE′,
由旋轉(zhuǎn)的性質(zhì)得,AE′=AE,CE′=CE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,
∵∠EAF=45°,
∴∠E′AF=∠CAE′+∠CAF=∠BAE+∠CAF=∠BAC﹣∠EAF=90°﹣45°=45°,
∴∠EAF=∠E′AF,
在△EAF和△E′AF中,
,
∴△EAF≌△E′AF(SAS),
∴E′F=EF,
∵∠CAB=90°,AB=AC,
∴∠B=∠ACB=45°,
∴∠E′CF=45°+45°=90°,
由勾股定理得,E′F2=CE′2+FC2,
即EF2=BE2+FC2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點B、E、C、F在一條直線上,AB=DF,AC=DE,∠A=∠D.
(1)求證:AC∥DE;
(2)若BF=13,EC=5,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D,E分別是AB,AC的中點,過點E作EF∥AB,交BC于點F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當△ABC滿足什么條件時,四邊形DBFE是菱形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D、E分別是AB、AC上的點,BE交CD于點O,BO=CO,DO=EO,AB=AC,AD=AE則圖中有___________對全等三角形( )
A. 2對 B. 3對 C. 4對 D. 5對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于點E.
(1)若∠A=58,求:∠E的度數(shù).
(2)猜想∠A與∠E的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞著點C順時針旋轉(zhuǎn)50°后得到△A′B′C′.若∠A=40°,∠B′=110°,則∠BCA′的度數(shù)是( )
A.90°
B.80°
C.50°
D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某福利工廠準備在六一前夕準備生產(chǎn)甲、乙兩種型號的玩具送給一所幼兒園,已知生產(chǎn)甲型玩具需要1號配件7個,2號配件2個;生產(chǎn)乙型玩具需要1號配件3個,2號配件5個,生產(chǎn)現(xiàn)有1號配件480個,2號配件370個,若該廠計劃生產(chǎn)甲乙兩種型號的玩具一共100個,用現(xiàn)有配件能否完成計劃?如能,請寫出所有的生產(chǎn)方案;如不能則說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】石頭剪子布,又稱“猜丁殼”,是一種起源于中國流傳多年的猜拳游戲,游戲時的各方每次用一只手做“石頭”、“剪刀”、“布”三種手勢中的一種,規(guī)定“石頭”勝“剪刀”、“剪刀”勝“布”、“布”勝“石頭”.兩人游戲時,若出現(xiàn)相同手勢,則不分勝負游戲繼續(xù),直到分出勝負,游戲結(jié)束,三人游戲時,若三種手勢都相同或都不相同,則不分勝負游戲繼續(xù),若出現(xiàn)兩人手勢相同,則視為一種手勢與第三人所出手勢進行對決,此時,參照兩人游戲規(guī)則,例如甲、乙二人同時出石頭,丙出剪刀,則甲、乙獲勝,假定甲、乙、丙三人每次都是隨機地做這三種手勢,那么:
(1)直接寫出一次游戲中甲、乙兩人出第一次手勢時,不分勝負的概率;
(2)請你畫出樹狀圖求出一次游戲中甲、乙、丙三人出第一次手勢時,不分勝負的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:
(1)若點(x1 , y1),(x2 , y2)在圖象上,當x2>x1>0時,y2>y1;
(2)當x<﹣1時,y>0;
(3)4a+2b+c>0;
(4)x=3是關(guān)于x方程ax2+bx+c=0的一個根,其中正確的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com