如圖,等腰梯形OABC,AB∥OC,點(diǎn)C在x軸的正半軸上,點(diǎn)A在第一象限,梯形OABC的面積等于7,雙曲線(x>0)經(jīng)過點(diǎn)B,則k=   
【答案】分析:根據(jù)等腰梯形的性質(zhì)得出EC=AD,BD=EO,再利用梯形面積公式得出DB×BE=7,即可得出k的值.
解答:解:過點(diǎn)B作BE⊥x軸于點(diǎn)E,延長BA到y(tǒng)軸于點(diǎn)D,
∵等腰梯形OABC,AB∥OC,
∴EC=AD,BD=EO,
∵梯形OABC的面積等于7,
(AB+CO)×BE=7,
(BD+EO)×BE=7,
∴DB×BE=7,
∴雙曲線(x>0)經(jīng)過點(diǎn)B,則k=7.
故答案為:7.
點(diǎn)評:此題主要考查了反比例函數(shù)的綜合應(yīng)用以及梯形的性質(zhì)與面積公式等知識,根據(jù)已知得出BD=EO,以及BD×BE=7是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(1)如圖,在等腰梯形ABCD中,AD∥BC,M是AD的中點(diǎn),
求證:MB=MC.
精英家教網(wǎng)
(2)如圖,在Rt△OAB中,∠OAB=90°,且點(diǎn)B的坐標(biāo)為(4,2).
①畫出△OAB向下平移3個單位后的△O1A1B1;
②畫出△OAB繞點(diǎn)O逆時針旋轉(zhuǎn)90°后的△OA2B2,并求點(diǎn)A旋轉(zhuǎn)到點(diǎn)A2所經(jīng)過的路線長(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衢州一模)如圖,直角梯形OABC的直角頂點(diǎn)是坐標(biāo)原點(diǎn),邊OA,OC分別在X軸,y軸的正半軸上.OA∥BC,D是BC上一點(diǎn),BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E,F(xiàn)分別是線段OA,AB上的兩個動點(diǎn),且始終保持∠DEF=45°,設(shè)OE=x,AF=y,則y與x的函數(shù)關(guān)系式為
y=-
1
3
x2+
4
2
3
x
y=-
1
3
x2+
4
2
3
x
,如果△AEF是等腰三角形時.將△AEF沿EF對折得△A′EF與五邊形OEFBC重疊部分的面積
17
8
或1或
41
2
-48
4
17
8
或1或
41
2
-48
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•汕頭模擬)如圖,直角梯形OABC的一頂點(diǎn)O是坐標(biāo)原點(diǎn),邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D是BC上一點(diǎn),BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點(diǎn),且始終保持∠DEF=45°.

(1)直接寫出D點(diǎn)的坐標(biāo);
(2)設(shè)OE=x,AF=y,試確定y與x之間的函數(shù)關(guān)系;
(3)當(dāng)△AEF是等腰三角形時,求y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形OABC的直角頂點(diǎn)O是坐標(biāo)原點(diǎn),邊OA,OC分別在x軸、y軸的正半軸上,OA∥BC,D精英家教網(wǎng)是BC上一點(diǎn),BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分別是線段OA、AB上的兩動點(diǎn),且始終保持∠DEF=45°.
(1)直接寫出D點(diǎn)的坐標(biāo);
(2)設(shè)OE=x,AF=y,試確定y與x之間的函數(shù)關(guān)系;
(3)當(dāng)△AEF是等腰三角形時,將△AEF沿EF折疊,得到△A'EF,求△A'EF與五邊形OEFBC重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形OABC的直角頂點(diǎn)是坐標(biāo)原點(diǎn),邊OA,OC分別在X軸,y軸的正半軸上.OA∥BC,D是BC上一點(diǎn),BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E,F(xiàn)分別是線段OA,AB上的兩個動點(diǎn),且始終保持∠DEF=45°,如果△AEF是等腰三角形時.將△AEF沿EF對折得△A′EF與五邊形OEFBC重疊部分的面積為
17
8
或1或
41
2
-48
4
17
8
或1或
41
2
-48
4

查看答案和解析>>

同步練習(xí)冊答案