如圖,⊙O的半徑為1,AB是⊙O的一條弦,且AB=,則弦AB所對(duì)圓周角的度數(shù)為   
【答案】分析:先根據(jù)題意畫出圖形,連接OA、OB,過O作OF⊥AB,由垂徑可求出AF的長(zhǎng),根據(jù)特殊角的三角函數(shù)值可求出∠AOF的度數(shù),由圓周角定理及圓內(nèi)接四邊形的性質(zhì)即可求出答案.
解答:解:如圖所示,
連接OA、OB,過O作OF⊥AB,則AF=AB,∠AOF=∠AOB,
∵OA=1,AB=,
∴AF=AB=×=
∴sin∠AOF===,
∴∠AOF=60°,
∴∠AOB=2∠AOF=120°,
∴∠AOF=∠AOB=×120°=60°,
在劣弧AB上取點(diǎn)E,連接AE、EB,
∴∠AEB=180°-60°=120°.
故答案為:60°或120°.
點(diǎn)評(píng):本題考查的是圓周角定理及垂徑定理,解答此題時(shí)要注意一條弦所對(duì)的圓周角有兩個(gè),這兩個(gè)角互為補(bǔ)角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點(diǎn),則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點(diǎn)F是BC的中點(diǎn),那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標(biāo)原點(diǎn)重合,在直角坐標(biāo)系中,把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為格點(diǎn),則⊙O上格點(diǎn)有
 
個(gè),設(shè)L為經(jīng)過⊙O上任意兩個(gè)格點(diǎn)的直線,則直線L同時(shí)經(jīng)過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側(cè),AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點(diǎn),且MP:PN=1:2.若PA=2,則MN的長(zhǎng)為
6
2
6
2

查看答案和解析>>

同步練習(xí)冊(cè)答案