已知拋物線的解析式為
(1)求證:不論m為何值,此拋物線與x軸必有兩個(gè)交點(diǎn),且兩交點(diǎn)A、B之間的距離為定值;
(2)設(shè)點(diǎn)P為此拋物線上一點(diǎn),若△PAB的面積為8,求符合條件的點(diǎn)P的坐標(biāo);
(3)若(2)中△PAB的面積為S(S>0),試根據(jù)面積S值的變化情況,確定符合條件的點(diǎn)P的個(gè)數(shù)(本小題直接寫出結(jié)論,不要求寫出計(jì)算、證明過程).
(1)證明見解析;(2)(m,4)或(,−4)或(,-4);(3)當(dāng)s=8時(shí),符合條件的點(diǎn)P有3個(gè),當(dāng)0<s<8時(shí),符合條件的點(diǎn)P有4個(gè),當(dāng)s>8時(shí),符合條件的點(diǎn)P有2個(gè).
【解析】
試題分析:(1)本題需先求出△的值,再證出△>0,再設(shè)出A、B的坐標(biāo),然后代入公式即可求出AB的長(zhǎng);
(2)本題需先設(shè)出P的坐標(biāo),再由題意得出b的值,然后即可求出符合條件的所有點(diǎn)P的坐標(biāo);
(3)本題需分當(dāng)s=8時(shí),當(dāng)0<s<8時(shí),當(dāng)s>8時(shí)三種情況進(jìn)行討論,即可得出符合條件的點(diǎn)P的個(gè)數(shù).
試題解析::(1)∵△=(2m)2-4×(-1)(4-m2)=16>0,
∴不論m取何值,此拋物線與x軸必有兩個(gè)交點(diǎn).
設(shè)A(x1,0),B(x2,0),
則(定值).
(2)設(shè)P(a,b),則由題意b=-a2+2am+4-m2,且,
解得b=±4.
當(dāng)b=4時(shí)得:a=m,即P(m,4);
當(dāng)b=-4時(shí)得:,即P(,−4)或P(,-4).
綜上所述,符合條件的點(diǎn)P的坐標(biāo)為(m,4)或(,−4)或(,-4).
(3)由(2)知當(dāng)s=8時(shí),符合條件的點(diǎn)P有3個(gè),當(dāng)0<s<8時(shí),符合條件的點(diǎn)P有4個(gè),當(dāng)s>8時(shí),符合條件的點(diǎn)P有2個(gè).
考點(diǎn):1.二次函數(shù)的和性質(zhì);2.曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系;3.分類思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com