【題目】如圖所示,一艘輪船在近海處由西向東航行,點C處有一燈塔,燈塔附近30海里的圓形區(qū)域內(nèi)有暗礁,輪船在A處測得燈塔在北偏東60°方向上,輪船又由A向東航行40海里到B處,測得燈塔在北偏東30°方向上.
(1)求輪船在B處時到燈塔C處的距離是多少?
(2)若輪船繼續(xù)向東航行,有無觸礁危險?
【答案】(1)40海里;(2)輪船繼續(xù)向東航行,無觸礁危險.
【解析】
(1)根據(jù)三角形內(nèi)角和定理求出∠ACB,根據(jù)等腰三角形的判定定理解答;
(2)作CE⊥AB交AB的延長線于E,根據(jù)正弦的定義求出CE,比較得到答案.
(1)由題意得,∠CAB=30°,∠ABC=120°,
∴∠ACB=180°-30°-120°=30°,
∴∠ACB=∠CAB,
∴BC=AB=40(海里);
(2)作CE⊥AB交AB的延長線于E,
在Rt△CBE中,sin∠CBE=,
∴CE=BCsin∠CBE=40×=20,
∵20>30,
∴輪船繼續(xù)向東航行,無觸礁危險.
科目:初中數(shù)學 來源: 題型:
【題目】某校初三進行了第三次模擬考試,該校領(lǐng)導為了了解學生的數(shù)學考試情況,抽樣調(diào)查了部分學生的數(shù)學成績,并將抽樣的數(shù)據(jù)進行了如下整理.
(1)填空_______,_______,數(shù)學成績的中位數(shù)所在的等級_________.
(2)如果該校有1200名學生參加了本次模擬測,估計等級的人數(shù);
(3)已知抽樣調(diào)查學生的數(shù)學成績平均分為102分,求A級學生的數(shù)學成績的平均分數(shù).
①如下分數(shù)段整理樣本
等級等級 | 分數(shù)段 | 各組總分 | 人數(shù) |
4 | |||
843 | |||
574 | |||
171 | 2 |
②根據(jù)上表繪制扇形統(tǒng)計圖
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以 為原點的直角坐標系中, 點的坐標為(0, 1),直線 交軸于點. 為線段上一動點,作直線,交直線于點. 過點作直線平行于軸,交軸于點 ,交直線于點.
(1)當點在第一象限時,求證:;
(2)當點在第一象限時,設長為,四邊形的面積為,請求出與間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)當點在線段上移動時,點也隨之在直線上移動,是否可能成為等腰三角形?如果可能,求出所有能使成為等腰直角三角形的點的坐標;如果不可能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學習小組做“用頻率估計概率的試驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如圖所示折線統(tǒng)計圖,則符合這一結(jié)果的試驗最有可能的是( )
A. 擲一枚正六面體的骰子,出現(xiàn)1點朝上
B. 任意寫一個整數(shù),它能被2整除
C. 不透明袋中裝有大小和質(zhì)地都相同的1個紅球和2個黃球,從中隨機取一個,取到紅球
D. 先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年2月16日,由著名導演林超賢的電影《紅海行動》在各大影院上映后,好評不斷,小亮和小麗都想去觀看這部電影,但是只有一張電影票,于是他們決定采用摸球的辦法決定誰去看電影,規(guī)則如下:在一個不透明的袋子中裝有編號1~4的四個球(除編號外都相同),從中隨機摸出一個球,記下數(shù)字后放回,再從中摸出一個球,記下數(shù)字,若兩次數(shù)字之和大于5,則小亮獲勝,若兩次數(shù)字之和小于5,則小麗獲勝.
(1)請用列表或畫樹狀圖的方法表示出兩數(shù)和的所有可能的結(jié)果;
(2)分別求出小亮和小麗獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點、,對連續(xù)作旋轉(zhuǎn)變換依次得到三角形(1)、(2)、(3)、(4)、…,則第個三角形的直角頂點的坐標是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知 x1、x2是一元二次方程4kx2﹣4kx+k+1=0的兩個實數(shù)根.
(1)求k的取值范圍.
(2)是否存在實數(shù)k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形中,已知,在邊上取點,使,連結(jié),過點作,與邊或其延長線交于點.
猜想:如圖①,當點在邊上時,線段與的大小關(guān)系為 .
探究:如圖②,當點在邊的延長線上時,與邊交于點.判斷線段與的大小關(guān)系,并加以證明.
應用:如圖②,若利用探究得到的結(jié)論,求線段的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com